Magdeburger Journal zur Sicherheitsforschung

Gegriindet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher und Jorg Sambleben
Erschienen im Magdeburger Institut fiir Sicherheitsforschung

Design and Implementation of an IPv6 Plugin for the
Snort Intrusion Detection System

Martin Schiitte

This work describes the implementation and use of a preprocessor module for the popular open source Intru-
sion Detection System Snort that detects attacks against the IPv6 Neighbor Discovery Protocol.

The implementation utilizes the existing preprocessor APIs for the extension of Snort and provides several new
IPv6-specific rule options that can be used to define IPv6 related attack signatures. The developed module is
aimed at the detection of suspicious activity in local IPv6 networks and can detect misconfigured network
elements, as well as malicious activities from attackers on the network.

The plugin’s source code is available at https://github.com/mschuett/spp_ipvé.

Keywords: IPv6, Snort, IDS, Intrusion Detection System, Plugin

Citation: Schiitte, M. (2013). Design and Implementation of an IPv6 Plugin for the Snort Intrusion Detection
System. Magdeburger Journal zur Sicherheitsforschung, 2, 409-452. Retrieved December 26, 2013, from http:/ /
www.sicherheitsforschung-magdeburg.de/publikationen.html

Version 2014/01/06 22:12


https://github.com/mschuett/spp_ipv6
http://www.sicherheitsforschung-magdeburg.de/publikationen.html
http://www.sicherheitsforschung-magdeburg.de/publikationen.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 6, Jahrgang 3, Band 2 (2013)

410

1 IPv6 Features and their Security
Implications

IPv6 (the Internet Protocol version 6) is the re-
engineered successor of the previous Internet Protocol
(version 4, thus IPv4), the common protocol layer of
all nodes! and networks connected to the Internet.

Some important changes from IPv4 to IPv6 are (based
on Deering and Hinden (1998), Frankel et al. (2010)
and Hogg and Vyncke (2009)):

¢ Larger Address Space: With 128 bits an IPv6 ad-
dress is four times as long as an IPv4 address with
32 bits and allows for vastly more addressable
nodes and networks. With IPv4 address exhaus-
tion imminent this is the most significant incent-
ive to deploy IPv6.

* Basic and Extension Headers: The number of
fields in the IPv6 header has been reduced to a
minimum to make packet processing by interme-
diate routers more efficient (cf. Figures 1 and 2).

* Multicast: IPv6 puts greater emphasis on multic-
ast addressing, and depends on it for autoconfig-
uration and neighbor discovery.

¢ Autoconfiguration and Neighbor Discovery:
IPv6 allows network devices to configure their
own addresses and routes without manual con-
figuration or additional network services (like
DHCP).

* Flow Labels: A new field is included to mark
sequences of packets (like TCP streams), which
might aid routers with similar handling of a
packet stream, for example to implement Quality
of Service, without having to read every packet’s
Hop-by-Hop header or upper layer information.

* [Psec: Support for strong authentication, data in-
tegrity and encryption is mandatory for all nodes
(in contrast to optional support with IPsec for
IPv4). Albeit key management problems gener-
ally prevent a widespread use, it provides the
basis for secure tunnels and authentication of
other protocols (e.g. Mobile IP and OSPF). — In
this work IPsec is only discussed as a means to
protect autoconfiguration (cf. section 8.2).

* Mobile IPv6: To obtain roaming Internet con-
nectivity for mobile devices, one associates hosts
with both a fixed Home Address and a changing
Care of Address in foreign nets. The use of [Psec
enables a secure binding and tunnelling between
these addresses. Like with IPsec this is specified
for IPv4 as well, but its IPv6 version makes use

1  The established IPv6 terminology is Hogg and Vyncke (2009,
p-4):

* A node is any system (computer, router, and so on) that com-
municates with IPv6.

* A router is any Layer 3 device capable of routing and forward-
ing IPv6 packets.

* A host is a node that is a computer or any other access device
that is not a router.

® A packet is the Layer 3 message sourced from an IPv6 node
destined for an IPv6 address.

of several IPv6 improvements (extension headers
and neighbor discovery) and no longer requires
special router support. — In this work Mobile IPv6
is not discussed.

¢ Transition mechanisms: To enable coexistence
and interconnectivity of IPv4 and IPv6 nets a
number of transition mechanisms are specified
and implemented, including dual-stack opera-
tion, tunnels and protocol translations. As all
of these methods introduce new network paths
between nodes, they enable new ways to ma-
nipulate routing paths and evade Access Control
List (ACL) restrictions. — In this work transition
mechanisms are not discussed.

2 Larger Address Space

The main incentive to deploy IPv6 is its larger address
space of 128 bits, as opposed to 32 bits in IPv4. These
128 bit addresses are split into a 64 bit subnet prefix
and a 64 bit interface identifier (with very few excep-
tions, e. g. for point-to-point connections; Kohno et al.
(2011) and Savola (2003)), so every subnet has 25* ad-
dresses for hosts to choose from.

At first sight this seems to prevent remote reconnais-
sance attacks by network scanning because it is infeas-
ible to scan significant parts of such a large address
space. But this is only true if the address allocation
algorithm leads to a sparse and pseudo-random dis-
tribution across the available address space.

The mandatory algorithm is to derive the interface
identifier from the network interface’s MAC address
in EUI-64 format. The IEEE EUI-64 (EUI for Extended
Unique Identifier) is a mapping of the 48 bit MAC ad-
dress into the 64 bit address space for IPv6 interface
identifiers. It concatenates the first 24 bits/3 octets of
the MAC address, the constant Oxfffe, and the last
24 bits /3 octets of the MAC address.”

The network interface’s 48 bit MAC address itself is a
concatenation of a 24 bit manufacturer ID (the Organ-
izationally Unique Identifier, OUI) and a 24 bit device
specific ID. With currently about 15 000 assigned OUIs
(many of which are historic and not present in any
current hardware), the actually used partition of the
EUI-64 address space can be reduced to well below
210 addresses. So the EUI-64 addresses have consid-
erably less entropy than randomly generated inter-
face identifiers, but still enough to prevent exhaustive
scanning.

Even more entropy is gained with randomized in-

2 The extra modification used for IPv6 consists of one bit flip

which is technically irrelevant but simplifies address manage-
ment: MAC and EUI-64 addresses have the seventh bit set
to indicate local scope addresses and unset for global scope
(globally unique addresses). Now if one uses the scheme to
define local scope addresses as for serial links or tunnels, these
would yield interface identifiers like fe80::200:0:0:1,
fe80::200:0:0:2, etc. — By inverting this bit for IPv6 one
can use the same uniform address format and still have simple
interface identifiers like fe80::1, fe80: : 2, etc. Hinden and
Deering (2006, section 2.5.1).
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0 3 4 7 8 1 12 15 16 23 24 31
Version Traffic Class Flow Label
Payload Length Next Header Hop Limit
Source Address basi
asic
header
(40 octets)
Destination Address
Next Header |
Data/Options
extension
Next Header | headers
Data/Options
Figure 1: IPv6 header format
0 3 4 7 8 1 12 15 16 18 19 31
Version | HdrLen | DSCP | ECN Total Length
Identification Flags | Fragment Offset
TTL | Protocol Hdr Checksum

Source Address

20-60 octets

Destination Address

options (if hdr length > 5) or data

Figure 2: IPv4 header format

terface identifiers, for example when using the pri-
vacy extension for stateless address autoconfiguration
Narten, Draves et al. (2007) or cryptographically gen-
erated addresses (CGAs; Aura (2005)).

On the other hand many networks use a sequential
numbering, often due to their DHCP server imple-
mentation or because it simplifies manual address
management assignment. These addresses have little
entropy and it is relatively easy to scan all hosts in
such networks Heuse (2010) and Malone (2008).

Other address related security issues might arise from
IPv4-IPv6 transition mechanisms. Because IPv4 ad-
dresses can also be represented as IPv6 addresses (us-
ing IPv4-mapped IPv6 addresses : : ££££:0000/96,
E. B. Davies, Krishnan et al. (2007, Page 2.2)) and
the coexistence of two IP versions will lead to many
tunneled connections Krishnan, Thaler et al. (2011),
multiple opportunities for evasion attacks are created.
For the foreseeable future all security devices, ranging
from network traffic analysis to firewalls, will have to
understand a variety of addressing schemes and en-
capsulation protocols only to determine the original
protocol and source/destination addresses of packets
(so they can apply the right restrictions and ACLs).

3 Multicast

The IPv6 addressing architecture defines a hier-
archy of multicast addresses for one-to-many com-

munication, ranging from link-local to site-local and
global scope (Hinden and Deering (2006, section 2.7);
Frankel et al. (2010, section 4.2)). Link-local multic-
ast is used extensively for autoconfiguration, mainly
as a more efficient replacement for the broadcast ad-
dress, which was used in IPv4 and ARP but is no
longer defined in IPv6. But having fixed addresses for
certain services (e.g. ££05::101 and ££05: : £b for
site-local NTP and mDNS servers) also simplifies net-
work management and configuration. Because mul-
ticast addresses are easily mapped to Media Access
Control/link-layer multicast addresses, the link-local
scope addresses are always usable whereas addresses
with higher scope require the necessary router config-
uration.
IPv6 routers and hosts use the Multicast Listener Dis-
covery Protocol (MLD, Deering, Fenner et al. (1999)
and Vida et al. (2004)) to manage group membership.
It uses ICMPv6 and defines the following message
types:

* Type 130, Multicast Listener Query,
Type 131, Multicast Listener Report,
Type 132, Multicast Listener Done, and
Type 143, Version 2 Multicast Listener Report.

The majority of current layer 2 devices (i. e. Ethernet
Switches) implement all multicast messages as broad-
cast; but some implement MLD Snooping to learn
which ports have to receive which multicast destin-
ations. This yields both more efficiency and more se-
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curity because it prevents many NDP attacks based
on multicast eavesdropping (e. g. the denial-of-service
attack against duplicate address detection were no
longer possible without receiving all solitextcited-
nodes multicast messages) or make them much easier
detectable (e. g. if an attacker had to join several mul-
ticast groups). On the other hand such an implement-
ation has to be robust against flooding; otherwise an
attacker could simply fill up the multicast association
tables, thus causing a fall-back to broadcasting, and
then proceed with one of the conventional attacks.

4 Flow Label

The Flow Label field is part of the basic header. So far
no standard usage of the flow label has emerged, thus
at this time all intended applications are only theoret-
ical and the 20 bit field remains essentially unused.

Proposed use cases include its utilization for Qual-
ity of Service (QoS) indication as well as inserting a
pseudo-random value to be used for load balancing
or as a security nonce to protect against spoofing at-
tacks Hu and Carpenter (2011). The latter case would
lead to inclusion of flow labels in packet filter’s con-
nection state, thus lowering the chances of packet in-
jection into established “flows” McGann and Malone
(2006). On the other hand every stateful of this value
would have to be prepared to face denial-of-service
attacks.

The IETF working group for [Pv6 Maintenance (6man)
currently discusses a new flow label specification,
which also includes a discussion of previously raised
security considerations Amante et al. (2011).

5 Extension Headers

IPv6 uses only a small basic header, which is sufficient
for most IPv6 packets. In comparison to IPv4 this ba-
sic header omits a checksum and fragmentation hand-
ling so processing (most importantly routing) packets
is simpler and more efficient.

If additional functions are required, a packet is aug-
mented with extension headers. These are supple-
mentary headers that are placed between the IPv6 ba-
sic header and the packet’s payload (i.e. the upper
layer protocol). To make this work the basic header
and all extension headers contain a Next Header field,
and every extension header type is assigned its own
protocol number. Using these building blocks, all IP
level headers are simply chained one after another by
using the Next Header field to indicate the protocol
number of the following header.

5.1 Extension Header Chaining

An IPv6 packet without extension headers will have
the protocol number of its upper layer payload in its
Next Header field (which is equivalent to the Protocol

field in IPv4), for example it may use protocol num-
ber 17 for UDP. Now if the same packet is encrypted
with IPsec then the sender includes an Encapsulated
Security Payload (ESP) extension header, which has a
protocol number of 50. So the basic header contains
a Next Header value of 50 to indicate the following
ESP header and the ESP header contains a Next Header
value of 17 to indicate the following UDP payload (see
figure 3 for examples).

The Hop-by-Hop Option header has a special status;
if it is used it has to be the first extension header be-
cause it is read by every router (see also section 5.2).
For all other extension headers the IPv6 specification
recommends that every header is included only once
and in a canonical order. This comes with one excep-
tion: in case a Routing header is used then it might
be necessary to also include two Destination Option
headers — one for the intermediate hosts and one for
the final destination. However, the canonical order is
a “should”-clause so it is not enforced and in prac-
tice packets with any combination of extension head-
ers have to be expected. “IPv6 nodes must accept
and attempt to process extension headers in any or-
der and occurring any number of times in the same
packet, except for the Hop-by-Hop Options header
which is restricted to appear immediately after an
IPv6 header only. Nonetheless, it is strongly advised
that sources of IPv6 packets adhere to the above re-
commended order until and unless subsequent spe-
cifications revise that recommendation” Deering and
Hinden (1998, p. 8).

5.2 Hop-by-Hop and Destination Options

The Hop-by-Hop and the Destination Option header
may carry additional options to influence the packet
processing. Destination options are examined only by
the receiving host, whereas Hop-by-Hop options are
also examined by every intermediate router (i.e. all
nodes along a packet’s path). The extension header
format is the same for both types and consists of the
next header and a length field followed by all options
concatenated. All enclosed options are encoded with
a type-length-value (TLV) scheme, so the processing
node simply iterates through the packet and reads all
options one by one.

The option type field has an internal structure of its
own: The highest-order two bits encode how nodes
have to handle unknown options. A node can either
skip the option, silently discard the packet, or discard
the packet and reply with an ICMPv6 error message.
The third bit indicates whether the option may change
during transport Deering and Hinden (1998, section
4.2). This structure enables the use of “optional” op-
tions that may be ignored if the processing node does
not understand them.

See figure 4 for the TLV schema and an example of
a complete extension header including an option and
padding

Possible Hop-by-Hop options include Router Alerts
and IPv6 Jumbograms. Router Alerts indicate that
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IPv6 TCP Data
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Figure 3: Use of Next Header Field and Extension Headers Biondi (2006, p. 61)
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(a) Hop-by-Hop and Destination Header format.
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8 15 16

Opt Type Opt Data Len | Opt Data ...
(b) Option TLV encoding.
0 78 15 16 23 24 31
Next Header: 0x3a | Hdr Ext Len: 0x00 8 Opt Type: Opt Data Len:
ICMPov6 octets 0x05 Rtr alert 0x02 2 octets
Opt Data: Opt Type: Opt Data Len:
0x00 0x00 MLD 0x01 PadN 0x00 0 octets

(c) Example: router alert inside a Hop-by-Hop extension header

Figure 4: TLV encoding for Hop-by-Hop and Destination Options.
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the packet’s content might have to be processed by
routers (albeit the packet is not sent to the router
itself). This option is primarily used for Multicast
Listener Discovery messages so the local router can
keep track of multicast group memberships.

IPv6 Jumbograms Borman et al. (1999) are packets
bigger than 65535 (or 2'5-1) octets. The size of pack-
ets like that does not fit into the basic header’s Payload
Length field, so it is added as a Hop-by-Hop option in-
stead. This Jumbogram option has a 32 bit length field,
so in theory it is possible to send IPv6 packets with
4 Gigabytes (232-1 octets) of payload. Sending such a
packet, possibly using UDP and a wrong checksum to
trigger retransmissions, may be considered a denial-
of-service attack on its own. In practice the use of
IPv6 Jumbograms is largely untested and there is high
risk of implementation errors where IP stacks may ac-
cept Jumbograms albeit using 16 bit integers to store
and process the packet’s payload length Frankel et al.
(2010, section 4.5).

Finally there are two extra options defined for pad-
ding, so a sender can satisfy different alignment re-
quirements: On the one hand the length of every IPv6
extension header has to be an integer multiple of 8 oct-
ets (64 bits), and on the other hand multi-byte option
values should be sensibly aligned.

The Hop-by-Hop Option extension header might
provide great flexibility to adapt new protocol fea-
tures (like the Jumbogram option), but at the same
time it leads to problems because it enables denial-of-
service attacks against routers by sending IPv6 pack-
ets with many Hop-by-Hop options. To amplify the
impact an attacker would use only those option types
that have to be ignored by receivers that cannot pro-
cess them. Then every router along a network path
will have to read all TLV encoded options (demand-
ing processing power) and forward the packet to the
next hop Krishnan (2011).

5.3 Routing Header

One particular problematic feature of IPv6 was the
routing extension header (cf. figure 5) which is basic-
ally a re-implementation of IPv4 loose source routing.
Sending hosts could add this extension header to in-
clude a list (of any length, only limited by MTU) of
nodes (both routers and hosts) to be “visited” by a
packet along the way to its destination Deering and
Hinden (1998, section 4.4).

At first this only lead to security concerns because it
allows attackers to evade traffic filtering based on des-
tination addresses and also simplifies reflector attacks
Savola (2002). Later it was shown how to abuse the
routing header for an amplified denial-of-service at-
tack against a routing path Biondi and Ebalard (2007).
Subsequently the use of this type 0 routing header
was deprecated Abley et al. (2007) and is now filtered
by virtually all routers.

Currently only one other routing extension header
is specified (not counting two reserved experimental

routing types 253 and 254): the type 2 routing header,
used for Mobile IPv6 Johnson et al. (2004, section 6.4).
Unlike type 0 this variant is not vulnerable to attacks
as it carries only the home address as a single inter-
mediate address and involved nodes have to verify
the home address before processing the packet.

5.4 Fragmentation

An essential function of layer 3 protocols is frag-
mentation of upper layer packets larger than the link-
layer maximum transmission unit (MTU). In contrast
to IPv4 the fragmentation information in IPv6 is no
longer part of the basic header but was moved into
an extension header (see figure 6 for the fragmenta-
tion header format and figure 7 for the resulting IPv6
packet layout). It is also no longer allowed or required
for routers to fragment packets in transit. Instead it
is the sender’s responsibility to correctly fragment its
data. For destinations on-link this is trivial because
the host will know the MTU. For remote destinations
the intermediate routers check the packet sizes and if
if a packet is too big (bigger than the MTU of the link
to its next hop) then the sender is notified by ICMPv6
type 2, Packet Too Big message, which includes the link
MTU that caused the error. In this case the sender
will try again by sending smaller messages; and for
long routing paths it may take several tries until the
sender has determined the path MTU to the destina-
tion network. Once it has determined this path MTU,
the sender will fragment all subsequent packets to be
smaller or equal to this size.

Overlapping fragments are a big concern for IPv4 net-
work security because they enable a variety of attacks
and evasion of security measures Novak (2005). Thus
IPv6 hosts must never send overlapping fragments
and discard received packets with overlapping frag-
ments Krishnan (2009). Nevertheless in practice many
implementation (including those in IDS and packet
filters) use common fragment reassembly routines for
IPv4 and IPv6, thus accepting overlapping fragments,
so they are vulnerable to mostly the same fragmenta-
tion attacks as with IPv4.

Some other evasion techniques by fragmentation are
still possible in IPv6; for example with artificially
small fragments (well below 100 octets) and multiple
extension headers the upper layer payload, including
the next header field, may only start in the second
packet — thus preventing protocol or port determin-
ation and filtering in intermediate packet filters.

IPv6 mandates a minimum MTU of 1280 octets and
Network technologies that cannot process this packet
size have to provide their own fragmentation and re-
assembly on the link-layer Deering and Hinden (1998,
section 5). An example for this is the LoOWPAN Ad-
aptation Layer to enable IPv6 on IEEE 802.15.4 wire-
less personal area networks Montenegro et al. (2007).
So “there is no reason to have a fragment smaller
than 1280 bytes unless the packet is the final fragment
and the ‘'m’ more fragments bit is set to '0". ... To be
very secure, one’s firewalls should drop all fragments
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Next Header Hdr Ext Len

Routing Type | Segments Left

type-specific data

Figure 5: Routing Header format.

that are below a certain size” Hogg and Vyncke (2009,
p.45).

But the difficulty remains to determine the certain
size, because the standard does not prohibit smaller
fragments and only states that “the lengths of the frag-
ments must be chosen such that the resulting frag-
ment packets fit within the MTU of the path to the
packets’ destination(s).” Deering and Hinden (1998,
p-20). — So a payload of 2000 octets does not have to
be fragmented into fragments of 1280 and 720 octets,
but might as well be split into two fragments with
1000 octets each (ignoring headers for simplicity). The
use of multiple tunnels or IPv4/IPv6 translation, like
the stateless IP/ICMP Translation Algorithm (SIIT; Li
et al. (2011)), may also unintentionally reduce a path
MTU below 1280.

5.5 Compatibility

The whole concept of extension headers makes IPv6
packet processing more complex and in practice is is
difficult to introduce new extension headers, because
all hosts involved have to understand all used exten-
sion header types. If a receiving host encounters an
unknown extension, it cannot process the packet and
has to notify the sender with an ICMPv6 type 4, Para-
meter Problem message. Depending on the kind of ex-
tension header this may prohibit further communica-
tion.

Obviously any packet filter and monitoring device
also has to support all extension header types used
by any node in its local network. Otherwise it is un-
able to read the packet’s payload and has to either ig-
nore these packets, thus enabling evasion attacks, or
drop/reject the packets, thus impairing normal net-
work traffic and revealing the monitoring.

To avoid these backward compatibility problems, it
is encouraged to add all new functionality as Destin-
ation header options; new extension headers should
only be defined if necessary because no existing
header is appropriate. It is also proposed that new ex-
tension headers should use a uniform format to in-
dicate their header length. This will allow all nodes
(and most importantly network monitoring devices)
to skip and ignore unknown extension headers but
still read following known extension headers and the
packet’s payload Krishnan, Woodyatt et al. (2011).

6 Neighbor Discovery

As soon as a device is connected to an IPv6 network, it
can automatically acquire a unique IP address and ob-
tain all necessary routing information. This autocon-
figuration follows the Neighbor Discovery Protocol
(NDP) Narten, Nordmark et al. (2007) and Thomson
et al. (2007).

The Neighbor Discovery Protocol is based on ICMPv6
messages and defines the following message types:

¢ Type 133, Router Solicitation (RS),

* Type 134, Router Advertisement (RA),

e Type 135, Neighbor Solicitation (NS),

¢ Type 136, Neighbor Advertisement (NA), and
* Type 137, Redirect Message (Redir).

Using these messages NDP provides a number of ser-
vices:

Router Discovery: IPv6 routers send router advert-
isements to all hosts; both unsolitextcited at reg-
ular intervals and upon request when hosts send
router solicitation messages. These router advert-
isement messages contain the basic network con-
figuration, that is the address of the router it-
self, the subnet prefix, an indication whether cli-
ents should use DHCPv6 for configuration, and
a lifetime to indicate how long the information
is valid. Recent specifications add even more in-
formation to IPvé’s router advertisements, most
importantly a DNS configuration Jeong et al.
(2010), but this is not yet implemented in most
systems.

Router Redirection: routers can send redirect mes-
sages to advise hosts how to use better routes for
their packets. This occurs in two cases: If a router
receives packets for the same subnet, then it can
inform the sender that the destination is on-link
and should be addressed directly; or if a subnet
has multiple routers and the router determines
that it is not on the optimal path, then it can in-
struct the host to use another first-hop router for
some destinations.

Address Autoconfiguration: whenever a host con-
nects to an IPv6 network it will assign itself a
link-local IP address and initiate router discov-
ery. The link-local IP is formed by concatenating
the link-local subnet prefix (fe80: : /10) and the
modified EUI-64 interface identifier.

By default, i.e. if the router advertisement does
not tell it to use DHCPv6, an IPv6 node will use
stateless address autoconfiguration (SLAAC) to
acquire its global IP address using the concaten-
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ation of the global subnet prefix and its interface
identifier. But depending on its configuration it
might also use other addressing schemes, for ex-
ample the privacy extensions Narten, Draves et
al. (2007) which use a random value as an inter-
face identifier.

Address Resolution: Before any IP (layer 3) commu-
nication is possible the sender has to know the
link layer (layer 2, e.g. Ethernet) address of the
destination host (or of the router, if the destin-
ation is not on-link). To resolve this address the
hosts uses the IP address to derive the associated
solitextcited-node multicast group and sends a
neighbor solicitation (NS) to this address. The
destination will receive the NS and answer with
a neighbor advertisement (NA) that includes its
link layer address (cf. figure 9).

The solitextcited-node multicast address used for
this mechanism is formed with the subnet pre-
fix ££02:0:0:0:0:1:££00:0/104 and the last
24 bits (3 octets) of an IPv6 address. For every
one of its unicast and anycast address a host has
to join the associated solitextcited-node multic-
ast group. — Thus address resolution becomes
more efficient (in comparison to IPv4/ARP us-
ing broadcast) because even in large subnets only
few hosts have to receive and process the NS
message.

Duplicate Address Detection (DAD): Before a host
acquires a new IP it verifies that the address is
not used by any other host. The mechanism is
basically the same as for address resolution, only
slightly modified because the requesting host has
no IP address yet (cf. figure 10): The host will de-
rive the solitextcited-node multicast group and
join it>. Then it will send a neighbor solicitation
(NS) for the tentative IP (like for address resolu-
tion, but it has to use the unspecified address : :
as source IP). If any other node uses this IP ad-
dress it has to react to the NS by sending a neigh-
bor advertisement (NA) to the solitextcited-node
multicast group — so the requesting node will re-
ceive the NA even without having an IP. If no
host answers to the NS then the IP is assumed to
be available and the host will start to use it. The
applied timeout is configurable and one second
by default. In case of unreliable link layers the
hosts should be configurable to send multiple so-
licitations after several retransmission intervals.

A host might also implement Optimistic DAD,
which speeds the algorithm up and allows hosts
to use the new address before DAD is completed.
It can be used for addresses with very low col-

3 At first sight this multicast join might be confusing because the
host uses the tentative IP address it has not acquired yet to join
the multicast group. — With regard to the network this works
because the DAD either fails, in this case the original owner of
the IP is already part of the multicast group and the join mes-
sage has no effect, or it succeeds, and in this case the tentative
IP address is acquired. If the DAD fails then the host will stop
listening to the multicast address; but this change of state is
purely local and does not require any additional message.

lision probability like EUI-64 addresses, random
values, or DHCPv6 assignments Moore (2006).

Neighbor Unreachability Detection (NUD): As
long as IPv6 hosts communicate with each other
they regularly verify their peer’s reachability. If
the upper layer use bidirectional communication
(i.e. TCP) that verification is implicit, but if the
upper layer protocols are unidirectional then an
explicit check is performed by sending a neigh-
bor solicitation message. If a failure is detected
a host should start a new address resolution in
case the IP address moved to another link layer
interface; if the error persists the peer is recog-
nized as unreachable and appropriate errors can
be propagated to higher protocol layers.

7 Attacks against the Neighbor
Discovery Protocol

With this combination of services it is obvious how
important NDP is for reliable network operation be-
cause all hosts depend on it for the most basic func-
tions. As basic precaution neighbor discovery mes-
sages are only processed on-link (their IP packets
have to include a Hop Limit of 255) and many attacks
require access to link-local multicast messages. But
with usually unsecured and unauthenticated layer 2
network access it is equally obvious how vulnerable a
local network is to NDP interference by malicious (or
misconfigured) nodes on-link. So even though IPv6 is
often seen as a re-introduction of the end-to-end prin-
ciple in network design, the special status of link-local
access will continue to require perimeter security.

Possible attacks can be classified by the attacked
nodes, either routers or hosts, and the result, which
is either a denial-of-service or a man-in-the-middle
configuration Chown and Venaas (2011), Ebalard,
Combes, Boudguiga et al. (2009), Ebalard, Combes,
Charfi et al. (2009) and Nikander et al. (2004).

7.1 Neighbor Solicitation/Neighbor
Advertisement Spoofing

These are attacks against the neighbor discovery of
normal hosts.

Neighbor cache poisoning: when a host receives an
NDP message it will use the message’s content
to update its neighbor cache (with few excep-
tions, like neighbor solicitations with unspecified
source addresses used for duplicate address de-
tection; also a neighbor advertisement will not
cause the creation of a new neighbor cache entry
—only the modification of an existing entry).

So an attacker can answer every address resolu-
tion with an advertisement message containing
the requested IP address and a random link-layer
address. The target host will accept the link-layer
address, resulting in a denial-of-service for about
30 seconds until the neighbor unreachability de-
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tection starts (and the attack can be repeated).
If the attacker inserts his own link-layer address
and answers all following messages accordingly,
the result is a man-in-the-middle position.

NUD failure: if a host starts the neighbor unreachab-

ility detection (NUD) because a peer no longer
responds, then an attacker can send fake neigh-
bor advertisement answers to pretend reachabil-
ity. This is a subtle denial-of-service attack whose
consequences depend on the specific context; in
a rather harmless case it will only take longer
for the upper layer protocol (i.e. TCP) to de-
tect the connection timeout, while a more severe
case would prevent fail-over in high-availability
architectures (e.g. if using multiple redundant
routers).

DAD DoS: an attacker can listen to neighbor solicit-

7.2

ation messages sent for duplicate address detec-
tion and respond to them with their own neigh-
bor solicitation (pretending to perform a coin-
cidental second DAD for the same address) or
a neighbor advertisement (pretending to already
use the IP). This is a denial-of-service situation
that prevents hosts from joining the network (or
acquiring additional IPs).

Router Advertisement/Redirection
Spoofing

These are attacks against router discovery mechan-
isms. (In addition to this list RFC 3756 also includes
the attack scenario “Good router goes bad” in which
an attacker compromises a previously benign and
trusted router. This is not listed here because it does
not pertain to NDP and the security of connected
devices is out of scope here.)

Malicious router: an attacker can simply act as a

router by answering router solicitation messages
and regularly sending router advertisements; this
leads to a man-in-the-middle situation. On its
own this is rather unreliable (the host might still
receive a benign router advertisement first), so in
practice it would be combined with a temporary
“kill router” attack.

Kill default router: an attacker has several ways to

perform a denial-of-service against a local router.
One approach is to send router advertisements
with a lifetime of zero, these will case the cli-
ents to discard the route; another option is to
overload the router, for example with a classic
bandwidth denial-of-service attack, or by send-
ing hard to process packets (possibly using hop-
by-hop option headers with many options, cf.
Krishnan (2011), or packets that require crypto-
graphic verification). If no router is available the
hosts will treat all destinations as on-link. So an
attacker could additionally use a neighbor cache
poisoning to gain a man-in-the-middle position.

Spoofed Redirect: an attacker can spoof a redirect

message using the default router’s address as

source and inserting itself as a better first-hop
router to be used for some destination. The res-
ult is a man-in-the-middle situation.

Bogus on-link prefix: a spoofed redirect can also in-

dicate that a remote destination is on-link, thus
generating a denial-of-service situation because
the following address resolution will fail. The
approach can be extended with neighbor cache
poisoning to gain a man-in-the-middle position.

Alternatively an attacker can flood the net with
random bogus on-link prefixes, thus perform-
ing a bigger denial-of-service attack by filling the
host’s routing table.

Bogus address configuration prefix: an attacker can

send router advertisements with an invalid sub-
net prefix to perform a denial-of-service attempt
against new hosts. New hosts executing stateless
address autoconfiguration will use this prefix for
their addresses and then will not be able to com-
municate (they will be able to send packets, but
no answers will reach them).

Parameter spoofing: spoofed router advertisement

messages can also contain other modified para-
meters (i. e. other than the router address and the
subnet prefix). Exemplary attacks are:

¢ announcing a low Cur Hop Limit, so host will
not be able to reach all destinations (denial-
of-service);

* unsetting the M/O-bits a DHCPv6-
managed net, thus preventing required
host configuration (denial-of-service);

¢ setting the M/O-bits in a net without DHCP
server, and then act as rogue DHCPv6 server
(man-in-the-middle);

¢ announcing a random host or oneself as a
recursive DNS server (denial-of-service or
man-in-the-middle).

7.3 Other

Replay attacks: with plain NDP replay attacks are

not an issue because an attacker can generate ar-
bitrary messages anyway. But they have to be
considered when adding protocols with cryp-
tographic protection like SEND (which is sus-
ceptible to duplicate address detection denial-
of-service attacks using replayed messages,
Cheneau and Combes (2008)).

Remote NDP DoS: a remote attacker can send mes-

sages to many different IPs in a subnet. The sub-
net’s router will have to perform address resolu-
tion for every IP and possibly be unable to pro-
cess local neighbor discovery messages (denial-
of-service situation). Hosts might be vulnerable
as well if a remote attacker can trick them into
sending messages to arbitrary on-link hosts.
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8 Security measures to protect the
Neighbor Discovery Protocol

Because the vulnerabilities of NDP are well-known,
there have been several attempts to strengthen the
protocol and prevent attacks.

8.1 Layer 2 filtering and RA-Guard

It should be noted that the early authentication prob-
lem is neither new nor unique to IPv6 autoconfigura-
tion, because eventually it is a layer 2 problem.

Thus the Address Resolution Protocol (ARP) used
with IPv4 and DHCPv4 have similar vulnerabilities
as IPv6 Ramachandran and Nandi (2005). The only
difference is that in IPv4 context their relevance has
been known for a longer time and many network
devices, most notably Ethernet switches, implement
mitigation techniques like static ARP entries and
DHCP snooping. Similar approaches exist for IPv6
(e.g. MLD snooping, cf. section 3), but they are not
as common or mature as their IPv4 predecessors.

Multilayer switches with ACL capabilities can also be
statically configured to only accept router advertise-
ments or DHCPv6 server messages on the right ports,
thus preventing several man-in-the-middle attacks.

A special case of this filtering is the IPv6 Router Ad-
vertisement Guard (RA-Guard, Levy-Abegnoli et al.
(2011)) which lets the layer 2 decide whether to pass
or drop router announcements (thus it is only applic-
able where all packets traverse a managed layer 2
device, usually the local switch). This decision can use
more or less complex rules, based on different attrib-
utes, including the physical port, the source link-layer
address, the source IP address, the announced subnet
prefix, and SEND-conform signature verification. The
implementation might be stateless (with configured
access rules) or stateful with automatic discovery dur-
ing a learning period.

It is also suggested to disallow all IPv6 exten-
sion headers for neighbor discovery messages Gont
(2011b) to make this filtering effective; otherwise
(i.e. with current implementations) it is easy to hide
rogue advertisements with extension headers and
fragmentation Gont (2011a). So far only few devices
support RA-Guard, but it is expected to become more
widely available because it is a relatively simple solu-
tion with little administrative cost.

One other problem with common layer 2 technology
(i.e. Ethernet) is the ability of any sender to use ar-
bitrary source addresses. This gives significant bene-
fits to an attacker: on the one hand it enables several
denial-of-service attacks (e.g. flooding the neighbor
cache) and on the other hand it minimizes the risk
of detection (because even upon detection, it is prac-
tically impossible to identify the originating device).
— Thus switches should be configured with source
address based ingress filtering if possible (i.e. if the
switch supports such filters and the network setup

is static). Then every switch port only accepts frames
from one or more correct link-layer source addresses,
attackers are forced to use their real link-layer address
(MACQC) and detected incidents can at least be tracked
to an originating switch port and the thereby connec-
ted network device.*

A completely closed and secure network will re-
quire authenticated layer 2 addresses, as provided by
IEEE 802.1X port-based network access control, and a
verifiable binding between a host’s layer 2 and layer
3 addresses. Strictly speaking this does not solve any
layer 3 security problem, but it moves the security
perimeter from the network to the hosts, because as
long as the involved hosts themselves are not com-
promised they can rely on each other to behave as in-
tended. In practice this is often not possible, because
many networks have to allow public access and not
all devices support IEEE 802.1X.

8.2 IPsec

IP Security (IPsec, Kent and Seo (2005)) is a frame-
work to provide security services — including access
control, integrity, origin authentication, and confiden-
tiality — at the IP layer (it is specified for IPv4 and
IPvo6).

On the network level it uses two protocols (in IPv6 ad-
ded as extension headers): the Authentication Header
(AH) to provide integrity, authentication and replay
protection for both headers and payload; and the En-
capsulating Security Payload (ESP) to provide integ-
rity, authentication, replay protection as well as con-
fidentiality by encryption for the payload only. The
main feature of AH, the protection of the IP header,
turned out to be a hindrance in IPv4 and NAT envir-
onments. Combined with the ability to use ESP with
NULL encryption for authentication without encryp-
tion, this lead to ESP being used more frequently. —
It is still controversial which method should be pre-
ferred for different contexts Frankel et al. (2010, sec-
tion 5.3.6) but the current standard reflects this devel-
opment by stating “IPsec implementations MUST sup-
port ESP and MAY support AH” Kent and Seo (2005,
section 3.2).

Both AH and ESP protocols support two modes of
operations: transport mode to protect normal end-to-
end IP traffic and tunnel mode to protect a point-
to-point VPN tunnel (see Figure 12 for the packet
formats).

On a policy level every host maintains a database of
security associations (SAs) and policies to keep track
of all connections, their respective security paramet-
ers (i.e. destination IP, used algorithms, and keys),
and which security services are used (or required) for
different associations. To automatically exchange keys
and initiate an IPsec connection an auxiliary protocol,

4  Because the same principle applies to Layer 3 the IETF has an

active working group for Source Address Validation Improvements
(SAVI, http:/ /tools.ietf.org/wg/savi). But to protect neighbor
discovery messages a layer 2 filter is necessary, whose presence
and implementation is device dependent.
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the Internet Key Exchange (IKE), is used to establish
the SAs, negotiate necessary parameters (like session
keys), and assure mutual authentication.

A general problem of IPsec is its limited support for
multicast messages because the whole protocol was
designed to protect communication between two end
points. Thus the use of IPsec for multicast communic-
ation requires key sharing between all receivers of a
multicast address, which nullifies IPsec’s source au-
thentication and replay prevention, and is also a chal-
lenge for key management and configuration (Dor-
aswamy and Harkins (1999, p.179ff); Frankel et al.
(2010, section 5.3.3)). Solving these problems in larger
multicast groups (where key sharing is not feasible)
necessitates additional protocol extensions and group
key management services Hardjono and Weis (2004)
and Weis et al. (2008).

One particular drawback for using IPsec and IKE dur-
ing IPv6 autoconfiguration is a bootstrap problem: the
security associations use IP addresses for identifica-
tion, and IKE uses UDP thus requiring an already es-
tablished IP address to work. This early authentica-
tion problem is profoundly different from normal mu-
tual authentication; it leads to different set of ques-
tions, assumptions, and requirements for peer iden-
tity and address ownership Nikander (2002). — As a
result IPsec can only secure the IPv6 autoconfigura-
tion if multiple SAs are manually set up for every IP
in a network on every host (Arkko, Nikander et al.
(2003); Frankel et al. (2010, section 5.4.1)).

IPsec (both in IPv4 and IPv6) is normally used in
tunnel mode to connect networks (VPN) or in trans-
port mode to secure connections to important serv-
ers (e. g. domain controllers and authentication serv-
ers that are susceptible to Man in the Middle attacks).
But even without considering the early authentication
during autoconfiguration, deploying it on all nodes to
encrypt all network traffic between them is not prac-
tical Hogg and Vyncke (2009, 325ff).

With regard to network security the use of IPsec is
also ambivalent: while it defends against a range
of network based attacks it also prevents monitor-
ing (and so hides application layer attacks or abnor-
mal traffic). One possibility to minimize the negat-
ive implications is to use IPsec just for authentica-
tion without encrypting traffic. But this use reveals
a problem with ESP-NULL encryption: the transmit-
ted packets do not contain any indication which en-
cryption algorithm is used (this is not necessary be-
cause both end points have that information in their
security association database). As a result a monit-
oring device cannot reliably determine whether an
IPsec message contains ESP-NULL encryption, it can
only use a heuristic approach and always try to in-
terpret the “encrypted” payload Frankel et al. (2010,
section 5.3.6).

So far IPv6 specifies mandatory IPsec implementation
on all nodes, which is often perceived as a major se-
curity feature; but very few nodes are actually con-
figured to use IPsec. Forthcoming IPv6 specification
updates will take this into account and downgrade

the IPsec support from a MUST to a SHOULD require-
ment Jankiewicz et al. (2011, section 11.1).

8.3 SEND

SEND, the Secure Neighbor Discovery protocol is an ap-
proach to secure neighbor discovery (Arkko, Aura et
al. 2002; Arkko, Kempf et al. 2005). It is designed for
wireless networks (and other “environments where
physical security on the link is not assured”) and uses
two building blocks: cryptographically generated ad-
dresses (CGAs) and router authentication.

CGAs are IPv6 addresses whose interface IDs are gen-
erated by using a one-way hash function from a RSA
public key, the subnet prefix and a security parameter
(Aura (2003, 2005); cf. figure 13). This requires a key-
pair on every host, but there is no public-key infra-
structure to bind keys to specific hosts or certific-
ate verification — so the key-pair can be generated as
needed because it is only used to prevent any imper-
sonation (i.e. ICMPv6 spoofing attacks). With SEND
the hosts add the CGA parameters and a RSA sig-
nature to all neighbor discovery messages. Receiving
hosts and routers have to verify the source address
(using the parameters to recalculate the one-way hash
function) and the signature (using the provided pub-
lic key) before processing the message.

The router authentication uses a conventional public-
key certificate validation: all hosts are to be con-
figured with a trust anchor (e.g. a local CA certific-
ate) and the router have a signed public-key certificate
(optionally with limited authorization for only spe-
cific subnet prefixes). In addition new ICMPv6 mes-
sages are defined to distribute the certification chain
to hosts:

» Type 148, Certification Path Solicitation and
o Type 149, Certification Path Advertisement.

With these preconditions all router advertisements
(and redirect messages) are to be signed and the
hosts will only accept router advertisements after they
successfully verified the router’s certificate and the
signed advertisements themselves.

As with all cryptographic protections the inevitable
downside is a higher demand on the nodes’ pro-
cessing power. While this is insignificant for desktop
PCs and servers, low power devices like sensor net-
works are very restricted in bandwidth, computation
and energy resources. Under such constraints it is
questionable whether IPsec or SEND are usable for
these devices Park et al. (2011); a suggested improve-
ment is the Lightweight Secure Neighbor Discovery
Protocol (LSEND) which uses more efficient elliptic
curve cryptography (ECC) primitives for CGA and
digital signatures Sarikaya et al. (2011). It also en-
ables new denial-of-service attacks against the router
that has to verify a potentially large number of signed
messages.”

5 For example the SENDPEES tool (http://freeworld.thc.org/thc-
ipv6/) will flood a target with bogus SEND messages, causing
a denial-of-service.
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So although SEND could solve most NDP problems,
it is still not implemented in major operating sys-
tems and thus not currently usable in most environ-
ments. It is also incompatible with alternate address-
ing schemes (i. e. in networks that require privacy ex-
tensions for stateless address autoconfiguration, EUI-
64 identifiers) its use of message time-stamps does
not completely prevent replay attacks Cheneau and
Combes (2008), and it allows for new denial-of-service
attacks because the required cryptographic verifica-
tion is computationally expensive.

8.4 DHCPv6

Although IPv6 provides autoconfiguration, it is not a
complete replacement for the Dynamic Host Configur-
ation Protocol (DHCP) because most implementations
only provide clients with an IP address and route in-
formation. DHCPv6 has additional options to also an-
nounce other services like DNS Jeong et al. (2010) but
this functionality is still new and rarely implemen-
ted.

Thus in practice DHCP has two advantaged over
stateless autoconfiguration (SLAAC): it can provide
clients with further information about the network
environment (like available name servers, time serv-
ers, SIP servers) and it allows the configuration of
stable host-IP associations. Because client identifica-
tion is still based on its MAC address, the difference to
stateless address autoconfiguration might be subtle;
but with SLAAC the client selects its IP while with
DHCP the server decides which IP it assigns, thus en-
abling a central management.

DHCP is specified both for IPv4 (DHCPv4, Droms
(1997)) and IPv6 (DHCPv6, Droms, Bound et al.
(2003)). DHCPv4 uses the IPv4 local broadcast ad-
dress (255.255.255.255) for client-server com-
munication: The client sends a dhcpdiscover
UDP packet with source 0.0.0.0 to destination
255.255.255.255. And the server replies with a
dhcpoffer UDP packet, containing the client’s MAC
address and its designated IP, also to destination
255.255.255.255. DHCPv6 is more flexible as it
uses two steps: the client first obtains a link-local IP
and then contacts a server by sending its request to
the DHCPv6 multicast group.

To reflect its importance, DHCPv6 has its own place
in IPv6 autoconfiguration: The router advertisement
contains bitflags, including ones for managed address
configuration (M-flag) and other configuration (O-flag).
The O-flag indicates that additional information is
available by DHCPv6 (which normal address config-
uration by autoconfiguration), and the M-flag orders
the hosts to use DHCPv6 for all configuration includ-
ing their IP address Narten, Nordmark et al. (2007,
section 4.2).

From a security standpoint the inclusion of DHCP has
little impact, because a DHCP server exhibits mostly
the same security properties as a router, i.e. it has to
be trusted by all hosts and compromising its service
is a gateway to all kinds of exploits and denial-of-

service attacks against the hosts (Hogg and Vyncke
(2009, pp. 208ff); Frankel et al. (2010, section 4.7.3)).

There is work in progress to combine DHCPv6 with
CGAs in order to prevent message spoofing attacks
Jiang and Shen (2011) and Jiang, Shen and Chown
(2011). Yet the security improvement seems to be neg-
ligible unless one also provides clients with a trust an-
chor to authenticate the server.

A more interesting approach is Authenticated DHCP
which needs a symmetric key for every client and
uses message authentication codes to validate messages
Droms and Arbaugh (2001) and Droms, Bound et al.
(2003). The standard defines two different authentic-
ation protocols but only the “delayed authentication”
is secure; the other one, which uses a “configuration
token” (i.e. a password transmitted in cleartext), is
vulnerable to eavesdropping and replay attacks.

Authenticated DHCP is rarely used, because it re-
quires substantial costs for key management and dis-
tribution and does not fit with the most common
DHCP use case of autoconfiguration in public net-
works. For centrally managed IPv6 networks the ad-
ministrative cost would be comparable to deploying
IPsec (but every client would only need configuration
of one DHCP Unique Identifier and its key instead of
a fixed IP and multiple static security associations).

8.5 rafixd & ramond

The RAFIXD® tool, written by the KAME project veri-
fies all router advertisements to detect bad prefix
announcements (it was originally intended to de-
tect misconfigured 6to4 announcements, but the same
principle works for other routing manipulations as
well). If it receives a bad router announcement, it
sends the same announcement again but with a life-
time of zero. — This should cause all hosts on the net-
work to discard the bad information.

Further developments of this principle include RA-
MOND’, written at the University of South Southamp-
ton, and NDPMONS, written at the University of
Nancy and INRIA (Beck et al. 2007). The latter pro-
gram collects neighbor advertisements as well but
does not try to reset rogue router advertisements.
These tools are, by definition, complete intrusion de-
tection and prevention systems, albeit very special-
ized and limited ones.

Unfortunately the effectiveness varies, because not all
IPv6 stacks behave as intended. So in practice these
tools cannot reliably fix the results of configuration
errors or routing attacks (an intentional attack could
even respond in the same way by resetting the le-
gitimate router advertisements — that way it can no
longer gain the man-in-the-middle position but still
perform a denial-of-service attack), but their detection
ability alone make them very useful for network man-
agement.

6 https://github.com/strattg/rafixd v. 2013-12-22
7 http://ramond.sourceforge.net/ v. 2013-12-22
8 http://ndpmon.sourceforge.net/ v. 2013-12-22
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9 Conclusion on IPv6 Security

Most IPv6 problems have their roots in layer 2 prob-
lems, namely unauthorized link-layer access and no
binding between layer 2 and layer 3 addresses. Thus
(in wired networks) both the most effective and effi-
cient solution is to use layer 2 filtering. All approaches
to solve these issues on the IP layer (layer 3) face
an early authentication problem; they loose the “plug
and play” property of autoconfiguration because they
have to preestablish cryptographically secured iden-
tities and trust relationships.

Table 1 gives an overview of neighbor discovery
attacks and countermeasures. An additional last
column indicates which attacks require an attacker to
use their own link-layer source address, so a success-
ful detection of this attack can also identify the re-
sponsible host (under normal conditions without fil-
tering).

With the fundamental inability to prevent attacks on
basic IPv6 functions in all but the most physically se-
cure network infrastructures, it is only more import-
ant to detect them as they occur in networks. The
RAFIXD and NDPMON tools show that monitoring the
neighbor discovery is a feasible measure to detect and
even react to abnormal network configurations. But
instead of using custom tools it should rather be ex-
plored how to use existing network monitoring ap-
plications, namely Intrusion Detection Systems, for
this task.

10 Intrusion Detection Systems

“Intrusion detection is the process of monitoring the
events occurring in a computer system or network
and analyzing them for signs of possible incidents,
which are violations or imminent threats of violation
of computer security policies, acceptable use policies,
or standard security practices. ... An intrusion detec-
tion system (IDS) is software that automates the intru-
sion detection process” Scarfone and P. Mell 2007, p. 2-
1.

Historically the field of Intrusion Detection Systems
stems from two developments: on the one hand the
first commercial users of computers had to include
these new machines into their financial audit proced-
ures; on the other hand the adoption of computers in
the military required trusted systems to process clas-
sified information, an effort resulting in the highly
influential rainbow series books Bace 2000, chap.1.
Since the 1980s, a large number of different IDSs were
developed to increase security of single computers
and networks alike. Nowadays, IDSs are a common
security measure on all sites that handle sensitive
data.

As with all security related techniques an IDS will
not “produce” security. Every IDS deployment has to
start with a security policy and an acceptable use policy,
because an IDS is only a tool to monitor for adher-
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Table 1: Basic categories of attacks against NDP (based on Nikander et al. (2004)) and appropriate countermeasures to prevent them. A X indicates no protection and a

v indicates an effective countermeasure against the specific attack. The deployment of IPsec requires manual key management (KM), and SEND requires either

manual key management or a public key infrastructure (PKI).

The last column does not represent countermeasures but indicates whether an attacking node has (v') or has not (X) to use its real link layer address (assuming

no ingress filtering).
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ence or violations of the policy which is encoded in
the IDS’s configuration (Bechtold and Heinlein 2004,
chap.2.3; Bace 2000, chap.2.2).

Some elements of security policies are unquestion-
able or implicit, for example on a host “files in /sbin
may not be modified” or in a network “MAC ad-
dresses may not be forged, and no spoofed ARP or
IPv6 neighbor discovery messages may be sent.” Oth-
ers are very site specific, depending on various factors
including devices, services, the kind of handled data,
and security requirements; for example “all SMTP
traffic has to be encrypted” or “connections to IRC
servers are not allowed.”

The most important characteristic of an IDS is its
detection accuracy as a combination of false positives,
i.e. raising a false alarm without actual policy vi-
olation (thus imposing higher maintenance cost for
manual investigation), and false negatives, i. e. not de-
tecting policy violations. The accuracy is usually de-
scribed using a receiver operating characteristic or
ROC curve. Simple percentage values are not mean-
ingful because these do not reflect possible trade-offs
between the error types and also because attacks are
relatively rare. For example, in a networking context
well below 1% of events might be a policy viola-
tion, meaning that even a system that never raises
any alarm will automatically have over 99 % accuracy
Lazarevi¢ et al. 2005, sec. 3.1.

In practice, it is rather difficult to determine an IDS’s
accuracy under realistic conditions Peter Mell et al.
2003; Zanero 2007. Using real network traffic or sys-
tem events is infeasible because it is not known which
and how many attacks it may contain. On the other
hand, constructing a large-scale testbed with a real-
istic environment (possibly including novel attacks)
takes considerable effort.

To date, the most extensive IDS evaluations’ were per-
formed in 1999 by the Lincoln Laboratory of the Mas-
sachusetts Institute of Technology, sponsored by the
Department of Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laborat-
ory (McHugh 2000). The recorded data was later pub-
lished as an intrusion detection corpus with several
weeks of network traffic and host audit logs, includ-
ing several hundred documented attacks. This corpus
was repeatedly utilized to evaluate and compare IDSs
and is still in use today for research in anomaly detec-
tion, data mining, and related fields.

11 Taxonomy of Intrusion
Detection Systems

Because the term intrusion detection system includes
a broad variety of approaches and programs, it is
usually qualified by additional attributes Bace 2000;
Lazarevi¢ et al. 2005. Most important distinctions are
based on the system’s information source, analysis

9  http://www.lL.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/ v. 2013-12-22

strategy, response capability, and time of analysis.

11.1 Information Source

A Host IDS monitors events on one host and uses
data sources like applications, filesystems, system log
messages, and audit trails. Thus host-based intru-
sion detection includes all kinds of log analysis both
on the system (e.g. syslog events and user login re-
cords) and the application layer (e.g. web server ac-
cess logs). It also includes integrity verification of files
as it is implemented for example in the TRIPWIRE'? or
VERIEXEC!! tools.

Network IDSs on the other hand only use the network
traffic as their data source and read all passing data
packets. This allows the detection of different events,
like attacks on the network stack, and has the advant-
age of being mostly transparent to users, i. e. invisible
on the hosts and not impairing the hosts” perform-
ance.

Although these approaches are very different, in some
cases they might use the same data sources, like
SNMP traps from managed network devices — as
these usually include both host based data (e. g. user
logins) and network based data (e. g. network traffic
metrics or packet drop rates). Some IDS products
also use a combination of both sources to correlate
more information (for example to supplement net-
work stream information with the communicating ap-
plication).

11.2 Analysis Strategy

A second dimension is the analysis strategy or de-
tection method: Misuse detection encodes possible se-
curity policy violations and then tries to match these
rules and signatures against all sensor data. This is
the approach used by typical anti-virus software that
compares all files against a database of virus signa-
tures. This requires previous knowledge of attack vec-
tors, but it also enables wide collaboration and shar-
ing of signatures (e.g. once a new vulnerability is
found, one can write and distribute a signature to de-
tect attacks using it).

The opposite approach is anomaly detection where the
IDS has some conception of “normal system use” and
monitors all events for deviations from this baseline
profile. The premise for this approach is an adequate
system model for statistical analysis (i.e. all events
can be represented and quantified) and a sufficiently
clear distinction between normal use and undesired
misuse (even the collection of “clean” training data
can be a problem). In addition the model should be
adaptive to changes in normal use patterns. Thus, it

10 Gene H. Kim and Eugene H. Spafford, 1995, The Design and
Implementation of Tripwire: A File System Integrity Checker, in
Proceedings of the 2nd ACM Conference on Computer and commu-
nications security, 18-29, http://doi.acm.org/10.1145/191177.
191183

11 Brett Lymn, 2000, Verified Executables for NetBSD, http:/ /www.
users.on.net/~blymn/veriexec/
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would be difficult to use anomaly detection to ana-
lyze a site’s network traffic if it includes heterogen-
eous systems and uses (e.g. desktop machines and
servers); but anomaly detection is successfully used
for specific domains, e.g. to monitor user behavior
(with events like login times and used programs).

11.3 Response Capability

Another attribute is the capability to react to detected
events. Every IDS supports a passive response, which
simply means the IDS records useful data and gener-
ates events or alarms to notify operators about detec-
ted incidents.

All actions beyond this are considered active responses
and the systems implementing them are called in-
trusion prevention systems (IPS) or intrusion detection
and prevention systems (IDPS). The most ambitious
ideas try to implement automatic real-time counter-
measures or even “counterattacks” to cope with the
speed and frequency of attempted network attacks. In
most cases however, this is not a realistic approach
because such automatisms would be susceptible to
spoofing, could cause more harm than good, and be-
come part of denial-of-service attacks themselves. Re-
latively simple response actions are to block attacks
by adding packet filter rules or by sending TCP re-
set packets are used by many systems, but even these
could result in a denial-of-service if they are misdir-
ected due to spoofing, or triggered by false positive
detection errors. Thus, the most useful actions are of-
ten the most harmless ones, for example, the system
could collect additional data to help later investiga-
tion of the incident.

A subclass of active response capability is the so
called inline mode found in Network IDPS in com-
bination with packet filters. In this setup all network
traffic passes through a network sensor acting as a
security gateway (common deployments implement
this as part of a layer 3 router or as part of a layer 2
bridge). Such a setup enables the IDPS to perform ad-
ditional filtering actions like passing, dropping, or re-
jecting single packets. It can also rewrite packet’s con-
tent on the fly, for example to perform a normaliza-
tion of all packets, or remove malicious content after
detection.

In the field of Network IDPSs, this latter case is some-
times considered as a third class of response capabil-
ity (e.g. in Scarfone and P. Mell 2007). But the prin-
ciple can be found in other kinds of IDS as well: For
example, on-access virus scanners or VERIEXEC show
the same behavior by checking a resource and then
deciding whether to grant or deny access to it.

11.4 Time Aspects

The final technical property is the time of data ana-
lysis. IDSs can process their data either in real time (on-
line) or in a batch mode (off-line). Curiously, most early
IDSs worked in batch mode because limited memory
and processing bandwidth did not allow for real-time

monitoring, whereas current hardware supports real-
time Network IDSs but limited disk I/0O bandwidth
makes it infeasible to record all traffic passing a 1G or
10G network link for off-line analysis.

11.5 Operation

One last distinction is the project size and the range of
use. On the one hand, there are numerous academic
projects with few users. On the other hand there is
a relatively small number of mature products with a
big number of installations. While the academic pro-
jects usually implement very specialized IDSs based
on new concepts or for new environments, the bigger
systems aim for more coverage (to monitor multiple
protocols, network layers, and hosts) and often create
their own ecosystem by enabling plugins and thus be-
coming the basis for subprojects.

12 Architecture of Network
Intrusion Detection Systems

All IDS solutions require the following parts to
provide basic functions, even though the actual mod-
ule naming, implementation, and boundaries may
differ. Figure 14 depicts a general IDS architecture.

12.1 Network sensors

One or more network sensors are required to get data
from the network. It is a common setup for small net-
works to connect an IDS to the switch’s monitor port
to have access to all packets on the network. Likewise,
an IDPS can run on a packet filter for in-band detec-
tion and prevention. Larger and more complex net-
works often require multiple sensors, e. g. before and
behind packet filters or in every subnet. Some designs
even allow for network and host sensors, e. g. to cor-
relate network traffic with running programs.

With continuously rising network data rates, the
packet capturing performance is still a critical factor
Braun et al. 2010. To increase efficiency, capturing is
normally implemented in the operating system’s ker-
nel (but accessible from user space, for example with
the the widely used LIBPCAP!? library,) and allows
for immediate filtering of captured packets (McCanne
and Jacobson 1993). So if resources are limited and the
IDS cannot analyze all network traffic, packets can be
ignored, for example with an FTP or media stream-
ing server, it would be sensible to monitor all control
connections but ignore the data connections.

12.2 Decoder

The decoder reads the packets, checks their protocol
format and checksums (just like a receiving host
would), and usually copies a packet’s attributes (like

12 http://www.tcpdump.org/ v. 2013-12-22
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protocols, addresses, port numbers) into an internal
data structure.

This stage checks the protocol formats and thus might
already trigger events and drop packets, e.g. those
with incorrect checksums.

12.3 Preprocessing

The preprocessing stage contain different functions
that process single packets (usually from low-level
protocols) and transform them into more abstract
events to allow signatures and rules to operate on the
application layer.

The most important functions are IP (Layer 3) de-
fragmentation and TCP (Layer 4) stream reassembly.
Other common modules normalize packets, detect
portscans and decode most important application
layer protocols (HTTP, SMTP, DNS, etc).

12.4 Detection

The heart of every IDS is the detection process itself.
Generally speaking all packets and events are checked
against the configured set of policies and rules at
this stage. Finding a good optimization algorithm and
applying only relevant rules is a decisive factor to
achieve high throughput.

12.5 Output

When detecting an intrusion, the IDS has to record the
incident.

The simplest types of recording are writing syslog and
similar logfiles, but only the smallest installations can
be adequately monitored with textual logfiles only. So
most products will not only write log messages but
also preserve the relevant network traffic (from single
packets to complete application sessions) not only in
text files but using multiple output channels includ-
ing SQL databases.

For IDSs with active response mechanisms, their ac-
tions (and an event log thereof) are also part of the
output.

12.6 Other

Besides the previously described parts constituting
the IDS itself, a usual setup will also include auxil-
iary programs for signature management, log/event
archiving, and log analysis.

Because systems use a large number of signatures and
also require regular signature updates, they often in-
clude management tools e. g. to select the right signa-
ture groups or automate signature updates.

Equally important for maintenance are tools for mon-
itoring alerts and accessing collected log data, both
to investigate attacks and to eliminate false posit-
ives. Such tools should provide comprehensive status
information about current detection events, prepare

filters and correlations to find bigger patterns, and
give access to all available details for incidents un-
der analysis (e. g. see Figure 16 for a screenshot of the
Snorby! IDS front-end).

13 Example Open Source Network
Intrusion Detection Systems

Currently, there are three widely-used open source
IDS projects: Bro, Snort, and Suricata.

Proprietary IDS solutions are not considered here be-
cause they are usually not extensible by self-written
plugins, nor is it easy to determine and verify their
actual detection capabilities.

13.1 Snort

SNORT! was created in 1998 by Martin Roesch and
is now maintained by his company Sourcefire Inc.
(Roesch 1999). It is probably the most widely spread
open source IDS and provides multiple interfaces for
third-party rules and plugins. One of its most success-
ful features is its rule language, which allows every-
one to define own signatures in a relatively simple
plain-text format.

Its currently stable version is 2.9.1 (released in Au-
gust 2011). Basic IPv6 support was added in version
2.8. Following versions added a few checks to the de-
coder (e. g. resulting in decoder alerts for packets with
a multicast source address) and the ability to normal-
ize IPv6 packets. In regard to detection signatures the
developers decided to pass all IPv6 values the same
way as IPv4 values to the detection engine, thus a sig-
nature for the IPv4 time-to-live (tt1: 100) will also
match an IPv6 hop limit. This has the advantage that
all existing signatures continue to work well on IPv6
but has the disadvantage that signatures cannot dis-
tinguish between IPv4 and IPv6 packets.

13.2 Bro

The BRO" project was written in 1998 by Vern Paxson
at the UCB (Paxson 1999). Bro IDS emphasizes a clean
distinction between the decoding stage, implemented
in C, and the analysis and alarm generation, which
is implemented in a domain-specific language called
“bro script”. This offers great flexibility but also re-
quires everyone to use “bro script” to implement new
policies.

The currently stable release is version 1.5.3 (released
in March 2011). Basic IPv6 support at the decoder
level exists since version 0.8 from 2003, but as in Snort,
the policy engine receives the same information as
for IPv4 packets and there are no default policies for
IPv6-specific patterns.

13 http://snorby.org/ v. 2013-12-22
14 http://www.snort.org/ v. 2013-12-22
15 http://www.bro-ids.org/ v. 2013-12-22
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13.3 Suricata

The youngest project is SURICATA!®: It was founded
in 2009 with the creation of the Open Information Se-
curity Foundation. Its goal is to create an IDS that is
backward compatible to existing Snort rule sets, but
not limited by Snort’s development and architecture
history. Thus, it places emphasis on new and exper-
imental features, most importantly parallelism and
multicore support.

Version 1.0 was released in early 2011 (with the cur-
rent stable version 1.0.5 released in July 2011). IPvé6
was supported from the start but similar to Snort’s
implementation, the support is limited to the decoder
stage and IPv6-specific information is not passed to
the detection routines.

13.4 Other Tools

There are also some specialized programs to track
IPv6 neighbor discovery, most notably those de-
scribed in section 8.5 (RAFIXD, RAMOND, and NDP-
MON). These tools monitor IPv6 autoconfiguration
messages and perform configurable actions when
new routers or hosts join the network.

By definition these tools are small but complete Net-
work IDSs by themselves. In practice, however, it is
preferred to integrate their functionality into bigger
IDS applications. Advantages of such a centralized
approach are ease of use, maintainability, and integ-
ration into existing log analysis and incident handling
procedures.

13.5 Conclusion

The use of Intrusion Detection Systems is a mature
and established method to discover, and in some
cases also to prevent, security violations. In the special
field of Network Intrusion Detection there are several
widely used open source products with basic IPv6
support in their decoder modules, but without IPv6-
specific detection routines.

Given that none of the available open source IDS’s
are mature enough in their IPv6 support in order to
detect the most commonly discussed attacks against
IPv6 neighbor discovery, the best course of action is to
modify and extend one of these IDS applications.

Snort turns out to be the best basis for a custom plu-
gin, not only because it is currently the most widely
used open source IDS, but even more so because it
offers dynamic plugin APIs to develop and deploy
plugins without the need to patch and recompile the
complete IDS application.

16 http://openinfosecfoundation.org/ v. 2013-12-22


http://openinfosecfoundation.org/

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 6, Jahrgang 3, Band 2 (2013) 426

15 16 28 29 30 31

| Res |M

Next Header | Reserved | Fragment Offset

Identification

Figure 6: Fragment Header format (M is the “more fragments”-bit).

Unfragmentable Part Fragmentable Part

r N N\

Link Layer
Header

IPv6
Header

Transport
Header

Payload

Link Layer
Trailer

I\

Link Layer
Header

IPv6
Header

%_J
Unfragmentable Part

Link Layer
Header

IPv6
Header

%_J
Unfragmentable Part

Fragment 1

Fragment 2

Transport
Header

Payload

Link Layer
Trailer

Fragment 1

Payload

Link Layer
Trailer

Fragment 2

Figure 7: IPv6 Fragmentation Hogg and Vyncke (2009, p. 44)



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 6, Jahrgang 3, Band 2 (2013)

427

dst
src

type

IPv6
version
tc

fl

plen

nh
hlim
src

dst

[33_33 00 00 00 01][00 15 2c c8 b8 80/(86 _dd
33:00:00:00: 6e 00
ggjigjggfgg_'gg_'gé 100 0000 401 [3a] [££][fe_80 00 00 00 00 00 00 02 15
oxdbdd 2c ff fo c8 b8 BO|[Ef 02 00 00 00 00 00 00 00 00
00 00 00 00 00 01]
23 6f 07 08][00 00

6L 00 00][00_00 00 00]

224L 01 [01][00 15 2c c8 b8 80

oL
64 [00_001{00 00 05 dc|

ICMPv6 ___{03][04][40)[cOT[00_27 8d _00][00 09
255 3a 80][00_00 00 00/[20 01 0d b8 00 12 00 ab 00 00
fe80::215:2cff:fec8:b880 00 00 00 00 00 00|

ff02::1

[ICMPv6 Neighbor Discovery - Router Advertisentent|

type

code

cksum

chlim

M

0]

H

prf

P

res
routerlifetime
reachabletime
retranstimer

Router Advertisement
0

0x236f

64

oL

oL

oL

Medium (default)
oL

oL

1800

0

0

[ICMPv6 Neighbor Discovery Option —Source Link-Layer Adgdress|

type 1

len 1

lladdr 00:15:2¢:c8:b8:80
[ICMPv6 Neighbor Discovery Option -
type 5

len 1

res 0x0

mtu 1500

[ICMPv6 Neighbor Discovery Option ~—Prefix Information
type 3

len 4

prefixlen 64

L 1L

A 1L

R oL

resl oL

validlifetime 0x278d00
preferredlifetime 0x93a80

res2 0x0

prefix

2001:db8:12:ab::
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Host A Host B
IP fe80::1234 IP £fe80: :abcd
Neighbor Solicitation,

src: fe80::1234,
dst: ££02::1:££00:1234

Neighbor Announcement,
src: fe80: :abcd,
dst: fe80::1234

Figure 9: Address Resolution. Host A uses the solitextcited node multicast address to query Host B’s layer 2
address; then Host B responds with a neighbor advertisement, including its layer 2 address in a
Destination Link-Layer Address option (like shown in figure 11).

Old Host New Host
IP fe80::1234 tentative IP £e80::1234

Multicast Listener Report,
src: fe80::1234,dst: f£02::16

Neighbor Solicitation,
src: ::,dst: ££02::1:££00:1234

Neighbor Advertisement,
src: fe80::1234,dst: ££02::1

Figure 10: Duplicate Address Detection with collision. After receiving the Neighbor Advertisement the new
host recognizes the collision, chooses another IP, and repeats the DAD.
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Figure 11: Detailed example of a neighbor advertisement message. It is sent to a unicast address and has a set
S-flag to indicate it is a solitextcited advertisement; thus it is a reply to an address resolution request.
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Figure 12: IPsec Packet Formats Hogg and Vyncke (2009, p.323)
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14 Snort Architecture

Two aspects are important to evaluate Snort as a de-
velopment framework: its stages of packet processing
and its plugin APIs. The former should give insight
on the general program structure and potential to ad-
opt new protocols and modes of operation. The lat-
ter should determine the potential for custom plu-
gins, namely what information and services a plu-
gin can use and what actions are available to influ-
ence the packet processing Beale, Baker, Esler et al.
2007; Bechtold and Heinlein 2004; Olney 2008; Roesch
1999.

Snort processes its data single-threaded in five stages:
network packets are acquired, decoded, prepro-
cessed, rules are applied, and alerts or logs are writ-
ten (see figure 18). Snort can use threads to parallel-
ize configuration reloading (which is important in an
IDPS configuration that should have minimal down-
time). However, all stages of packet processing are
run sequentially in a single thread of execution.

Except for the capturing stage, all options and settings
are given in one configuration file: snort.conf. Its
syntax allows for inclusion of other files, so the rule
set can be distributed across multiple files (usually it
is organized by protocol or classification).

14.1 Data Acquisition/Packet Capturing

With the release of version 2.9.0 the packet capturing
was moved into a separate library, Data AcQuisition
library (DAQ/LIBDAQ). This library provides a small
API towards Snort and encapsulates all (often system
dependent) packet capturing code.

Notable capturing modules are pcap, which provides
access to LIBPCAP, nfg to interact with Linux’s IPT-
ABLES packet filter, and ipfw for the BSD IPFW packet
filter. The pcap module is particularly useful for de-
velopment because it can read a previously prepared
PCAP file, whereas modules like nfg and ipfw are re-
quired for inline mode operation.

As one would expect, Snort’s main control structure is
built around a central event-loop (or PacketLoop () )
that reads network packets from the DAQ layer (in
DAQ_Acquire ()).

14.2 Decoding

Once a packet is read from the network, its decod-
ing follows the network protocol stack. Depending on
the currently used DAQ module an appropriate layer
2 decoder is used, e.g. DecodeEthPkt () for Ether-
net.

The L2 decoders in turn calls the L3 decoders,
most importantly DecodeIP () (for IPv4) and
DecodeIPv6 (), whereas these will pass the L3 pay-
load to L4 decoders: DecodeTCP (), DecodeUDP (),
DecodeICMP (), DecodeICMP6 () (cf. figure 19).

To monitor other networks than Ethernet Snort also

includes L2 decoders for IEEE 802.11/WiFi, Token
Ring, FDDI, and Cisco HDLC, as well as decoders for
MPLS packets and the special pcap link layer types
LinuxSLL (“cooked sockets”) and OpenBSD PF log.
This modular design should make it relatively easy to
add new decoders for other protocols.

Likewise the L3 and L4 decoders support a number
of encapsulation protocols so Snort can decode IP-in-
IP, GRE and Teredo packets; for example when using
a simple encapsulation with Ethernet — IPv4 — GRE
— IPv6. However, Snort can only process one level
of encapsulation; the reason for this limitation is the
struct Packet data structure, (cf. figure 20) which
only provides fields for one “outer” and one “inner”
packet.

14.3 Preprocessor

The preprocessor stage includes modules for de-
fragmentation, stream reassembly, portscan detection,
and a number of application layer protocols such as
HTTP, SMTP, DNS. This is also the first layer with a
dynamic plugin API; so it is possible to provide third-
party preprocessors as dynamically linked libraries.
Snort preprocessors may have three functions: They
implement their own checks to trigger alerts, they
normalize data to simplify detection rules, or they
provide new rule options for the detection layer.
For example the included ss! preprocessor will trig-
ger alerts on certain SSL error messages, and it also
provides the ssl_state and ssl_type rule op-
tions; as another example the http_inspect prepro-
cessor implements preprocessor alerts, rule options,
and additionally normalizes HTTP-specific data such
as URIs.

The calling order is primarily determined by the pre-
processors, as they register themselves for one of sev-
eral predefined stages (network, normalization, ap-
plication, etc.). This serves as a simple but sufficient
dependency control, for example it letts all applica-
tion layer preprocessors (like ssl and http_inspect) be
called after fragment and stream reassembly (frag3
and streamb).

A more detailed description of the preprocessor API
follows in section 15.2.

14.4 Rule Engine

The core of Snort’s processing is the evaluation of con-
figured rules. Its simple rule notation (cf. Figures 21)
allows developers and users to easily configure the
IDS policy.

Because IDS installations will need a large num-
ber of rules (the official Snort rule sets contain over
15000 rules with 4 000 of them active by default) their
efficient rule application is crucial for system per-
formance and observable network bandwidth. This
has led to highly optimized data structures and
evaluation algorithms including bucketing all rules
into port groups (by protocol and source/destination
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[loop through all active PPs]

[output alert/log events]

Figure 18: Schematic outline of Snort’s packet processing loop

SnortMain
PacketLoop
DAQ_Acquire --> pcap
PacketCallback
ProcessPacket {
DecodeEthPkt —-—> DecodeIPV6 ——>
Preprocess -——>
Detect -—> [apply rules]
SnortEventglog ——>
}
Incoming
Packet
DecodeVlanPkt DecodeEthPkt

802.1Q Ethernet

DecodePPPoEPkt
PPPoE

DecodePppPktEncapsulatjed

DecodeUDP
UDP

DecodeICMP
ICMP

DecodeARP
ARP

DecodeIPV6
IPv6

%)

DecodeIPV6Extensipts DecodeIPV60ptio
IPv6 Ext Hdrs IPv6 Options

DecodeTCP
TCP

DecodeICMP6
ICMPv6

Figure 19: Call Graph of Snort’s Decoding Stage for Ethernet (based on Beale, Baker, Esler et al. 2007, p. 184.

ports) and additional optimization for content pattern
matching.

Every rule requires a header with an action (log,
alert, drop, ...), protocol (ip, icmp, tcp, udp),
source address with port, direction, and destination
address with port. Source and Destination may con-
tain single addresses, lists of addresses, or the “any”
keyword; to simplify configuration one uses variables
(like $SMTP_SERVERS in figure 21b) but these are
simply substituted at parsing and have no relevance
to the underlying evaluation.

This header is followed by a number of options, en-
closed in parenthesis. Several options are not used
for evaluation, but contain meta-data about the rule;
the most important ones are sid and rev to unam-
biguously identify a single rule (with revision num-
ber) and msg to provide a useful log message. For
evaluation the most important option is content be-
cause it is used for many rules (nearly all application-

specific rules search for content in TCP streams)
and enables further optimization based on length
and offset (implemented as a so called fast pattern
matcher).

To facilitate application-specific rules the set of op-
tions is not fixed but extensible by preprocessors (de-
scribed in section 15.2).

Most rules are designed to be stateless, which is an
advantage because rule management does not have
to consider dependencies among different rules; but
also has the disadvantage because it prevents detec-
tion of patterns that involve more than one packet.
The stream5 preprocessor implements session track-
ing for TCP connections and series of UDP packets
between the same endpoints. This session tracking
also includes a simple mechanism to add state to ses-
sions with the flowbit option. Using this option a
rule can set (or unset, or toggle) a named bit for a
session (e. g. when the application performs a user lo-
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typedef struct _Packet

{
const DAQ_PktHdr_t =pkth; // packet meta data
const uint8_t xpkt; // raw packet data

EtherARP xah;
const EtherHdr xeh; /* standard TCP/IP/Ethernet/ARP headers
const VlanTagHdr =xvh;

const IPHdr xiph, *orig_iph;/# and orig. headers for ICMP_x_UNREACH
const IPHdr sinner_iph; /* 1f IP-in-IP, this will be the inner
const IPHdr *outer_iph; /* 1f IP-in-IP, this will be the outer

IP4Hdr *ipdh, xorig_ip4h; /* SUP_IP6 members x/
IP6Hdr xip6h, xorig_ip6h;
ICMP6Hdr *icmp6h, *orig_icmp6h;

uint32_t preprocessor_bits; /* flags for preprocessors to check */
uint32_t preproc_reassembly_pkt_bits;

uint8_t frag_flag; /+ flag to indicate a fragmented packet
uint8_t mf; /* more fragments flag */

uint8_t df; /+ don’t fragment flag */

uint8_t rf; /% IP reserved bit =/

uint8_t uri_count; /* number of URIs in this packet =*/
uint8_t error_flags; /+ flags indicate checksum errors, etc.

uint8_t encapsulated;

uint8_t ip_option_count; /+ number of options in this packet */
uint8_t tcp_option_count;

uint8_t ip6_extension_count;

uint8_t ip6_frag_index;

uint8_t ip_lastopt_bad; /+ flag to indicate that option decoding
was halted due to a bad option */
uint8_t tcp_lastopt_bad; /* flag to indicate that option decoding

was halted due to a bad option */
uint8_t next_layer; /+ index into layers for next encap */
//

IPOptions ip_options[MAX_IP_OPTIONS];
TCPOptions tcp_options[MAX_ _TCP_OPTIONS];
IP6Extension ip6_extensions[MAX_IP6_EXTENSIONS];

const IP6RawHdrx raw_ip6_header;
ProtoLayer proto_layers[MAX PROTO_LAYERS];
LogFunction log_funcs[MAX_LOG_FUNC];
uintl6_t max_payload;

/#+xpolicyId provided in configuration file. Used for correlating configuration

* with event output
*/
uintl6_t configPolicyId;

} Packet;

Figure 20: Data structure for Snort’s packet processing

(shortened to show only 39 out of 114 fields); decode .h:1465ff

*/

*/
*/
*/

*/

*/
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var EXTERNAL_NET any
var HOME_NET [192.0.2.0/24,2001:db8:12:ab::/64]
var SMTP_SERVERS [192.0.2.123,2001:db8:12:ab::123]

(a) Snort configuration variables.

alert tcp S$EXTERNAL_NET any -> $SMTP_SERVERS 25 (
msg:"SMTP sendmail 8.6.9 exploit";
flow:to_server,established;
content: "|OA|Croot|OA|Mprog";
metadata:service smtp;

reference:arachnids, 142; reference:bugtraq,2311; reference:cve, 1999-0204;

classtype:attempted-user;
s1d:669; rev:9;
)

(b) All TCP traffic to port 25 of defined SMTP servers will be examined and an alert is raised if the given content is found.

alert icmp $EXTERNAL_NET any -> SHOME_NET any (
msg:"ICMP traceroute"; itype:8; ttl:1;
reference:arachnids, 118;
classtype:attempted-recon;
s1d:385; rev:4;)

(c) All incoming ICMP traffic is checked for packets with ICMP type 8 (Echo request) and a time to live of 1; these packets
cause an alarm, because they indicate a traceroute reconnaissance.

Figure 21: Snort rule examples.

gin) and can also test a named bit (e. g. a rule might
detect a critical situation but only trigger an alert if
there was, or was not, a prior user login). The de-
pendency on sessions make the flowbit mechanism
quite effective for tracking application layer protocols,
but obviously unsuitable for monitoring the network
layer.

Snort also includes an API to load complete rule eval-
uation routines from dynamic libraries. This serves
three purposes: the first is simply to take existing rules
and compile them for higher performance, the second
is to implement checks that cannot be expressed in the
normal rule notation, the third is to allow the distribu-
tion of rules in binary form without an easily human-
readable version (see section 15.1).

14.5 Output

All alarms and log messages from preprocessors and
matching rules are collected in an event queue (one
for every packet). The length of the event queue and
its ordering is configurable, and superfluous events
are ignored.

An important function of the event queue is the
detection, rate, and event filtering. The main con-
figuration commands are the detection_filter
option, which is used as part of a signature, and
the event_filter command, which is used stan-
dalone and applies to generic events (i. e. to both rules
and preprocessor alerts). These statements implement
either a rate limit (log only a given number of events
per interval and ignore additional events), a threshold
(log only if an event occurs more often than a given
number of times per interval), or a combination of
both (cf. figure 22). A related command for IDPS con-
figurations is the rate_filter, which changes the
kind of rule action when a configured rate is ex-
ceeded. This enables more complex rules with mul-

tiple thresholds, for example a denial-of-service pre-
vention that logs when some rate is reached and drops
the packets when a second, higher rate is reached.

After the detection stage this event queue is pro-
cessed. For every event its associated action is
triggered, and if events are associated with rate fil-
ters, their thresholds are also checked here. In IPS or
inline mode the pass, drop, or reject actions are
triggered by setting corresponding flags. After com-
pletion of this processing stage the DAQ module will
then read these flags and perform the requested ac-
tion.

The usual actions 1og and alert can be more com-
plex, so traditionally they have been encapsulated in
another (static) Plugin API to support various output
channels ranging from syslog messages to SQL data-
bases; but because of Snort’s single-threaded design,
problems in output modules (e. g. a slow or lost data-
base connection) can impair the whole IDS. For this
reason the current best practice is to decouple IDS
and output processing. One way to configure this is
to write all Snort output (logs and alerts) into local
binary log files using the unified2 output module. The
unified2 data format is a type-length-value (TLV) en-
coding (cf. figure 24) and provides types for differ-
ent events (like IPv4 event, IPv6 event) and packets
(cf. figure 23 for important data structures).

Other programs can read the unified2 files and post-
process the log data, either by analyzing it directly
or by converting it into more suitable output formats.
Common conversions include forwarding the events
via syslog and writing events and payload into an
SQL database. The most commonly used tool for post-
processing is BARNYARD2', which uses a plugin ar-
chitecture itself so it is extensible with new and cus-
tomized output formats.

17 http://www.securixlive.com/barnyard2/ v. 2013-12-22
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event_filter \
gen_id 1, sig_id 1851, \
type limit, track by_src, \
count 1, seconds 60

(a) Limit to logging 1 event per 60 seconds.

event_filter \
gen_id 1, sig_id 1852,
type threshold, track by_src, \
count 3, seconds 60

(b) Limit to logging every 3rd event per 60 second interval.

event_filter \
gen_id 1, sig_id 1853, \
type both, track by_src, \
count 30, seconds 60

(c) Limit to logging just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds

Figure 22: Examples of different event_filter types http://www.snort.org/ file README filters.

typedef struct _Serial Unified2_ Header
{

uint32_t type;

uint32_t length;
} Serial_Unified2_Header;

//UNIFIED2_PACKET = type 2
typedef struct _Serial Unified2Packet
{
uint32_t sensor_id;
uint32_t event_id;
uint32_t event_second;
uint32_t packet_second;
uint32_t packet_microsecond;
uint32_t linktype;
uint32_t packet_length;
uint8_t packet_datal4];
} Serial_Unified2Packet;

//UNIFIED2_IDS_EVENT_IPV6_VLAN = type 105
typedef struct _Unified2IDSEventIPv6
{

uint32_t sensor_id;

uint32_t event_id;

uint32_t event_second;

uint32_t event_microsecond;

uint32_t signature_id;

uint32_t generator_id;

uint32_t signature_revision;

uint32_t classification_id;

uint32_t priority_id;

struct in6_addr ip_source;

struct in6_addr ip_destination;

uintl6_t sport_itype;

uintl6_t dport_icode;

uint8_t protocol;

uint8_t impact_flag;

uint8_t impact;

uint8_t blocked;

uint32_t mpls_label;

uintle6e_t vlanId;

uintlé_t pad2; /#could be IPS Policy local idx/
} Unified2IDSEventIPv6;

Figure 23: Important unified2 data structures Unified2_common.h.
Different event types are very similar; for example the only difference to the IPv4 event format is
that the latter uses a uint 32_t for source and destination addresses.

’ Type | Length | Data | Type | Length | Data ‘

Figure 24: TLV structure of unified2 output files.
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15 Snort Plugin APIs

Snort provides different APIs for customized com-
ponents, both static (i. e. requiring changes in Snort
itself) and dynamic (i.e. extensible with a dynam-
ically linked library). These components range from
data acquisition in libdaq to message output plugins.
For extended protocol support and detection it has a
dynamic detection API and a dynamic preprocessor
APL

15.1 Snort Dynamic Detection API

The dynamic detection API Beale, Baker, Esler et al.
2007, chap.5 allows to replace rules with code from
dynamically shared object files (. so on unix-like sys-
tems). When Snort initializes its rules it will read all
shared object files in the configured directory (given
with dynamicdetection directory) and use the
rules defined therein. Snort offers two ways to write
these rules: either in the same way as in the rule lan-
guage or by implementing an evaluation function.

The first option is a more or less direct mapping of
the rule language to C data structures. The rule is
written as a struct _Rule with values for the rule
header, essential meta-data, and an array of rule op-
tions. When these rules are loaded they are treated
just like text rules and their options are inserted into
the rule evaluation tree.

The alternative is to use an evaluation function, which
has no resemblance to the textual rule language. In-
stead, a function is written that will receive a packet as
its argument and returns whether the packet matches
the rule or not. This obviously allows for greater flex-
ibility. For example such a function could inspect data
patterns that would be very complex to describe in
the rule language, or it might combine rule options
by disjunction instead of normal conjunction.

The biggest limit of the detection API is the binary
return value: for every rule and every packet it can
only indicate a match or no match.

15.2 Snort Dynamic Preprocessor API

The dynamic preprocessor API is more powerful and
more appropriate for protocol level verification, so it
will be described in greater detail. It uses a typical
event handler design in which every plugin gets ini-
tialized and registers a number of callback routines or
handler functions to be called for certain events.

Library Initialization

At the most basic level, every dynamic prepro-
cessor is a shared object file with a small set
of defined symbols. On Snort start-up all con-
figured plugin library files (either single files given
with dynamicpreprocessor file or all files
in one directory with dynamicpreprocessor

directory) are opened and their respective entry

function is called. This entry function receives
a list of all function pointers (in a struct
_DynamicPreprocessorData) which it will need
to interact with other Snort subsystems. Besides sav-
ing this pointer it also registers the plugin with its
name, version number, and initialization routine.

Preprocessor Initialization

For those preprocessors that are activated in
snort.conf (with a preprocessor directive),
their previously registered initialization routine is
called. A usual preprocessor initialization will pro-
cess the given configuration parameters (used to set
processing options or to pass knowledge about the
environment), allocate memory, prepare internal data
structures, and register further handlers for packet
processing.

Additionally it will save the created configuration
data structure as its “context”. Because Snort supports
multiple configurations, a single Snort instance can
monitor different VLANSs or IP subnets with differ-
ent settings; it can also reload its configuration file
at runtime. For both of these functions it expects all
preprocessors to use only one pointer to hold their
configuration and state. This pointer is later passed at
every invocation of the preprocess handler. Thus Re-
loading is implemented by replacing this user data;
likewise the use of several pointers to different con-
texts enable multiple configurations to coexist in one
Snort instance.

Rule Option Handlers

The first set of handlers are used to provide op-
tion keywords for detection rules (if the preprocessor
provides any). For this the preprocessor registers a
keyword to be used as a rule option, along with a set
of handlers to process the rules. The parameters for
this registration are first a keyword for the option, fol-
lowed by a handler for rule option initialization. This
one is called when the rule option is parsed and it
has to convert the given textual parameter into an in-
ternal data structure. The third parameter is the hand-
ler for rule evaluation, called at runtime whenever
the rule option is evaluated for a packet, this hand-
ler tells whether the rule option matches or not. The
fourth parameter is a handler for memory cleanup,
called when exiting or reloading Snort; usually the
free function is used as only complex data structures
require more sophisticated cleanup routines.

Actually every occurrence of an option and the sub-
sequent call to the rule option initialization will cre-
ate a new instance of this rule option and allocate a
new data object When the detection engine builds the
option tree for rule evaluation it uses a simple hash
function to compare new options to existing ones; be-
cause this hash function includes the memory object
address it cannot recognize redundant instances and
will add all of them as new option tree nodes (OTNs);
i.e. if one creates 1000 rules including the option
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typedef int (xeval_func_t) (void xoption_data, Packet «*p);
typedef struct _detection_option_tree_node
{
void xoption_data;
option_type_t option_type;
eval_func_t evaluate;
int num_children;
struct _detection_option_tree_node xxchildren;
int relative_children;
int result;
struct
{
struct timeval ts;
uint64_t packet_number;
uint32_t pipeline_number;
uint32_t rebuild_flag;
char result;
char is_relative;
char flowbit_failed;
char pad; /#* Keep 4 byte alignment +/
} last_check;
} detection_option_tree_node_t;

Figure 25: Data structure for option tree nodes. For preprocessor rule options option_data points to the
instance data and evaluate to the handler function.

ssl_version:sslv2 then all instances of this op-
tion become separate option nodes which have to be
evaluated at runtime. For rule options that only com-
pare integer values this is often acceptable because
both the data object (holding the integer) and the eval-
uation function (performing a comparison) need few
resources. Nevertheless, this is a suboptimal situation
which is avoided if the preprocessor also provides its
own hash and comparison functions.

The hash function has to return a hash value based
on the rule option and parameter. When two op-
tion hashes are equal the comparison function will be
called and it decides whether the provided data ob-
jects represent the same rule option. When these call-
backs are provided, the detection engine can recog-
nize duplicate options as identical. It will then dis-
card the new one as redundant (and free its memory)
and reuse the existing option node. Figure 25 shows
the OTN data structure and figure 26 shows the tree
optimization for four rules and four instances of the
four different rule options. It also shows how the de-
tection engine uses leaf nodes to signify a completed
path and thus a rule match. Their evaluation causes a
lookup of which rule(s) have matched and queues the
associated action (alert, log, etc.) in the packet’s event
queue.

The rule option registration may receive additional
parameters. These may register a custom OTN hand-
ler, which may be used to write rule options that are
not inserted into the detection option tree (currently
only used by the sdf preprocessor for sd_pattern
rules) Plugins may also register handlers to access and
optimize the fast pattern matcher (currently only used
by the dce2? preprocessor for dce_iface rules).

Preprocessor Handler

The most important handler for many preprocessors
is a callback for every packet. Besides the callback
and an ID the registration uses a priority and a se-

lector. The priority determines the preprocessor or-
dering (available priorities are: first, normalize, net-
work, transport, tunnel, scanner, application, and last)
and selectors allow the preprocessor to be called for
certain protocols only (available selectors are IP, ARP,
TCP, UDP, ICMP, Teredo, and All). The given func-
tion will be called for every packet matching the se-
lector (including “pseudo-packets” after defragment-
ation and stream reassembly). There are no limits to a
preprocessor’s access to the packet data or the actions
it can cause upon detecting an incident. Just like the
built-in preprocessors it has full access to the current
packet and can inspect the packet with access to both
the original packet data in memory and the already
decoded representation of its lower layers (up to TCP
or UDP ina struct _SFSnortPacket). It can keep
state in arbitrary data structures of its own and also
access some of Snort’s other subsystems in order to
log messages or add to a packet’s event queue.

Other Handlers

Additional handlers can be registered for configur-
ation checking at startup, printing module statistics
at shutdown, profiling module performance, and re-
loading the configuration.

To trigger alerts Snort provides its preprocessors with
a function to add an alert to the packet’s event queue
using a generator ID (unique for one preprocessor),
Snort rule ID (unique for one rule or preprocessor
alert situation), and a log message. Besides these
alerts preprocessors can also generate different log
messages, ranging from debug information to normal
notices up to error messages.

For more complex preprocessors Snort also provides
functions to access several of its subsystems (policy,
stream, search, and obfuscation functions), to influ-
ence the packet’s processing (e. g. evaluate rules, dis-
able further detection, or create new packets), and to
manipulate the packet’s event queue. Finally some
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alert icmp any any -> any any (itype:8; ipv: 4;
msg:"ICMPv4 PING in v4 pkt"; sid:100000; rev:1;)
alert icmp any any -> any any (itype:8; ipv: 6;
msg:"ICMPv4 PING in vé6 pkt"; sid:100001; rev:1;)
alert icmp any any -> any any (itype:128; ipv: 4;
msg:"ICMPv6 PING in v4 pkt"; sid:100002; rev:1;)
alert icmp any any -> any any (itype:128; ipv: 6;
msg:"ICMPv6 PING in v6 pkt"; sid:100003; rev:1;)

(a) Example signatures using the (built-in) it ype and the (plugin-provided) ipv rule options.

Port Group
ICMP any—->any

|

NC Rule
Tree Root
[t ~8({y [Fypeiizd [itypeiizg
!'l"l! !'LM !'l"l! !'l'6!
| | | |
’ leaf ’ ’ leaf ’ ’ leaf ’ ’ leaf ’

(b) Without optimization every rule would be stored as a list of its options
(similar to the three dimensional linked list used in Snort versions before

2.0).

Port Group
ICMP any—->any

|

NC Rule
Tree Root

’ itype:8 ’ ’itype:128’

| <

] ipv:4 y ] ipv:6 y

] [

(c) The actually generated optimized
evaluation tree.

Figure 26: Example of detection rules and the resulting rule option evaluation tree. The rules will yield a single
port group for ICMP any->any without content rules.

common utility functions are provided as well (most
of them to parse configuration options like splitting
tokens and converting strings to integers).

16 IPv6 Plugin Requirements

An IDS plugin for IPv6 should be able to detect the
known attacks (described in section 1) and have at
least as much functionality as the existing “small”
tools (mentioned in sections 8.5 and 13.4). Addition-
ally it should fit into the IDS’s toolchains for data pro-
cessing (for generated logs) and administration (for
configuration and rule management).

The detection of known attacks can be divided into
sets of stateless and stateful checks. Stateless checks
should be easy to implement and be sufficient to
verify used protocol options, like the use of routing
headers. To accommodate IDS deployments on hard-
ware with limited memory, it should be possible to
enable or disable all checks with higher resource con-
sumption.

It still needs to be decided whether to implement
these checks with hard-coded values inside the plu-
gin, with configurable values inside the plugin, or as
a rule outside of the plugin; in the last case the plu-
gin has to implement the rule option to access the
IPv6-specific fields, but the logic and the matching/
non-matching values are part of the rule set, thus
accessible to signature management tools. The best
choice depends on how often the checks are expected
to change. New ICMPv6 types and routing headers

take a long time to specify and implement in routers,
so it is reasonable to hard-code them and release a
new version of the plugin. On the other hand all site-
specific settings have to be user configurable.

In order to facilitate future rule development, a plu-
gin should make all protocol fields accessible for Snort
rule options. This affects in particular the IPv6 header
fields Traffic Class and Flow Label because these have
no direct IPv4 equivalent; so they are not accessible
with Snort’s existing built-in rule options. Likewise
the extension headers and option types inside these
extension headers should be testable with rule op-
tions. One may be able to test the option’s values
as well. — Yet as the option values have no common
format, this function may be limited to a subset of op-
tions with 8 or 16 bit values.

All neighbor discovery checks are stateful, because
they will have to keep track of currently active hosts.
Also stateful by nature are fragment reassembly and
host/port scanning detection — but in common IDS ar-
chitectures these functions are already implemented
in existing preprocessors, thus out of scope for an IPv6
plugin.

The desired integration into the IDS is a non-
functional requirement, but it is important because
this integration makes a plugin more valuable than
standalone tools like NDPMON. As a first step avail-
able services offered by the IDS should be used, be-
cause Snort and other IDSs already include tested
code for decoding and fragmentation reassembly and
there is no need to re-implement these functions. A
second step is the configuration: it should follow the
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configuration of similar plugins to make it easier to
manage and prevent surprises. Likewise the gener-
ated alerts and messages should be useful for later
analysis, for example alerts should be descriptive, and
support individual activation/deactivation. Finally a
good plugin should enable future development. By
providing rule options it allows developers and users
to write more complex or customized signatures us-
ing the plugin’s detection capability.

17 IPv6 Plugin Functionality

This project implements three layers of functional-
ity: the preprocessor tracks neighbor discovery mes-
sages and generates preprocessor alerts for significant
events; independently a set of rule options provide ac-
cess to IPv6 values for Snort detection signatures; fi-
nally some detection signatures (using the new rule
options) are prepared to detect IPv6-specific anom-
alies.

17.1 Preprocessor Alerts

The preprocessor maintains its own network view by
tracking all neighbor discovery messages. On every
change in this network view it triggers a snort event;
this happens every time a new host or router appears
on the net, a router changes its advertisement, and a
duplicate address detection fails.

The effectiveness and accuracy of this tracking de-
pends on the network topology and sensor place-
ment. The preprocessor is designed to use a sensor
on the switch’s monitoring port, which will receive all
neighbor discovery messages of the subnet. A sensor
running on a gateway or a packet filter will receive
fewer packets and only has access to partial status in-
formation.

Most of these events are intended to directly cause
a Snort alert, for example whenever a new router
appears or a router changes the advertised pre-
fix. If Snort is configured and compiled with the
enable-decoder-preprocessor-rules, then it
is also possible to change the rule type (e. g. to change
an alert into a drop rule). Some other events, like
the DAD failure, are subject to Snort’s rate filtering
mechanism, for example to detect flooding attacks.
Table 2 lists all preprocessor alerts.

The preprocessor accepts a small number of optional
parameters for site-specific customization. These al-
low for static configuration of router and host MAC
addresses and the local subnet prefix. For an example
see figure 27.

Size and Duration of NDP Tracking
State

The number of tracked nodes is limited to con-
trol memory usage. The configuration para-
meters max_routers n, max_hosts n, and
max_unconfirmed nspecify for how many routers,

hosts, and tentative IP addresses (i.e. started du-
plicate address detections) the preprocessor keeps
state information. The defaults are max_routers
32, max_hosts 8192, max_unconfirmed
32768. Every tracked IP address requires 60 bytes
of memory, so by default the memory usage for the
preprocessor’s net view is capped to about 2.4 Mb.

The parameters expire_run mand keep_state n
determine how quickly the preprocessor forgets about
inactive nodes; the defaults are expire_run 20
keep_state 180. Every mminutes the state inform-
ation is cleaned up and nodes which have been inact-
ive for more than n minutes are removed from the pre-
processor’s network model. — In a strict sense the pre-
processor determines activity only by seeing ICMPv6
messages from the node. Still this is sufficient, because
IPv6’s neighbor cache and the regular neighbor un-
reachability detection require link-local ICMPv6 mes-
sages for every IPv6 communication between hosts.

Generally speaking, these parameters have little im-
pact on the preprocessor’s function and there should
be no reason to change the defaults. Only under very
tight memory constraints would it be sensible to de-
crease the limit of tracked nodes (to reduce memory
usage in case of a denial-of-service attack), or in un-
usually large subnets it could be useful to give a
higher expire_run parameter to reduce the per-
formance impairment of state cleanups.

White Lists

Several parameters help to adapt the prepro-
cessor to local network environments. With
net_prefix Prefix; Prefix, one or

more subnet prefixes are specified in Classless Inter-
Domain Routing (CIDR) notation; if this option is
used then the preprocessor will alert whenever it
detects a router announcing a different prefix.

The parameter router_mac MAC; MAC, tells
the preprocessor to verify the MAC address of
router advertisements and raise an alert if any other
device acts as a router. Similarly the parameter
host_mac MAC; MAC, tells it to check all pack-
ets for unknown source MAC addresses.

It is generally advisable to use the net_prefix and
router_mac options, because they enable useful IDS
checks with very little effort. The host_mac option is
only appropriate for small and static networks where
the administrative cost of maintaining a list of MAC
addresses is viable.

Disable Tracking

Finally, the configuration parameter
disable_tracking completely disables the
tracking of neighbor discovery messages and net-
work state. In this mode the preprocessor will still
inspect every ICMPv6 packet and perform all state-
less checks. — But it will not save any MAC or IP
addresses as its network state.
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Table 2: IPv6 preprocessor alerts (using GID 248)

SID Message

RA from new router

RA prefix changed
RA flags changed

RA with lifetime 0
new DAD started
new host in network

O 0N OO WN -

10 DAD with collision

RA for non-local net prefix

RA from non-router MAC address

new host with non-allowed MAC address

11 DAD with spoofed collision

12 mismatch in MAC and NDP source linkaddress option

13  ipvé: extension header has only padding options (evasion?)
14 ipvé: option lengths != ext length

preprocessor ipvé: \
router _mac 00:16:76:07:bc:92 \
net_prefix 2001:db8:1::/64 \

keep_state 120

Figure 27: Example preprocessor activation with configuration parameters.

17.2 Rule Options

As described previously (cf. section 13.1), the Snort
detection engine tries to unify IPv4 and IPv6 pro-
cessing and applies existing IPv4 options to IPv6
packets as well. While this is useful in many cases, it
does not allow the creation of IPv6-specific signatures
— so this plugin implements an additional set of rule
options.

Table 3 lists the available rule options to match the
different IPv6 header fields. The built-in options are
already provided by Snort and apply to IPv4 and IPv6
packets alike; the other options (marked in the “new”
column) are implemented by the IPv6 preprocessor.
There are no explicit tests for addresses, because IP
addresses and network prefixes are already matched
in the rule’s header.

Several options support the use of modifiers to neg-
ate a match (like ip_proto: !17;), to use compar-
ison operators (like ip6_extnum: >2; and ttl:
<=10;), to specify ranges (implemented with dif-
ferent symbols in dsize: 640<>1280; and ttl:
200-240;), or to apply the boolean functions XOR,
AND and NAND (like ip6_tclass: &0x00ff;).

Except for ip6_optval, all ip6_~ options have a
uniform syntax: They take an optional comparison
operator (x) and a numeric argument (n) in either
decimal or hexadecimal notation. The following
operators are implemented (but not all are applicable
to every option):

= equality (default)
< less than
" binary exclusive-or

! negation

> greater than
& binary and
| binary nand

These binary operators are sufficient to cover all use
cases because all options of a rule form a logical
conjunction. To prevent ambiguity the operators >
and < are not implemented, nor are range operators
(asin ttl: 200-240;); in simple cases ranges can
be expressed with two options (e.g. ip6_extnum:
>0; ip6_extnum: <4;). However, this kind of
chaining does not work for elements that may oc-
cur multiple times in a single packet. For example
the signature with icmp6_nd_option: >10;
icmp6_nd_option: <17; does not necessarily
select SEND-specific neighbor discovery options, but
would also match a router advertisement containing
a type 1, Source Link-layer Address and a type 25,
Recursive DNS Server Option.

17.3 Rules

In most cases the use of Snort signatures is preferable
to preprocessor alerts, because signatures are more
flexible and customizable by users.

Nearly all of the plugin’s stateless detection functions
are implemented as Snort signatures using the IPv6-
specific rule options described in section 17.2. This
enables users to easily enable/disable the signatures,
modify them as they deem appropriate for their net-
work environment (e. g. by changing an alert into a
log action, or adding a rate filter to frequent events),
and organize them using existing signature manage-
ment tools.

The prepared rules fall into three categories: The first
set matches unusual IPv6 packets, which indicate net-
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alert icmp any any -> any any (ipv:
msg:"ICMPv6/NDP msg routed";

6; itype:
s$1d:124800; rev:1;)

130<>138; ttl:

<255; \

(a) Signature to detect NDP messages which have been routed from another subnet.

alert icmp any any -> any any (ipv:
msg:"ICMPv6/NDP Redirect msg";

6; itype: 137; ttl:
51d:124803; rev:1;)

255; \

(b) Signature to detect redirect messages.

alert icmp any any -> any any (ipv:
detection_filter:
msg:"ICMPv6/RA flooding";

6; itype: 134;
track by_dst, count 5, seconds 1;
s$1d:124850; rev:1;)

event_filter gen_id 1, sig_id 124850, type limit, track by_dst, count 1, seconds 60

(c) Signature to detect router announcement flooding, including both a threshold (five messages per second) and a rate

limit (one alert per minute).

Figure 28: Example rules from ipv6.rules.

work problems. These might be invalid packets, for
example neighbor discovery messages with a Hop
Limit # 255 (as neighbor discovery messages should
be link-local and not be forwarded by the router,
e.g. in figure 28a), or legit but rarely used messages,
such as Router Renumbering messages.

The second set has to be enabled/disabled depend-
ing on the local network configuration. It contains
alerts for SEND, DHCPv6, IPsec and Redirect mes-
sages (cf. figure 28b), which are either very com-
mon or should never appear at all on a given sub-
net — depending on whether the network and its serv-
ers are configured to use these protocols or multiple
routers.

The third set is intended to alert on flooding attacks.
Its signatures select normal neighbor discovery mes-
sages but use detection_filter options to add a
threshold of several messages per second and also a
event_filter to limit the number of events to one
alert per minute (cf. figure 28c).

18 Implementation and Snort
Integration

The next sections will show how the described func-
tionality is implemented. The plugin’s interface fol-
lows the specification of the Snort dynamic prepro-
cessor API as described in section 15.2.

18.1 Plugin Initialization

As soon as the shared object is loaded, a minimal lib-
rary initialization handler is called and registers the
preprocessor plugin with name ipv6 and initialization
handler IPv6_Init.

This preprocessor initialization handler (schematic
shown in figure 29) is called if the the user activates
the plugin by adding the line preprocessor ipvé6
to their snort . conf. It receives the given configura-
tion parameters (if any), parses them (using the separ-
ate function IPv6_Parse), allocates memory for the

plugin’s data structures, and finally registers all fur-
ther callback handlers. This includes the most import-
ant handler functions IPv6_Process for the prepro-
cessor and IPv6_Rule_Init/IPv6_Rule_Eval
for the rule options.

18.1.1 Preprocessor Handler Registration

Most of this initialization concerns the prepro-
cessor functionality. First the memory for the
preprocessor’s data structures is allocated and
all configuration parameters are parsed. Then
the «calls to sfPolicyUserPolicySet and
sfPolicyUserDataSetCurrent associate the
newly created configuration with the current Snort
context (only relevant if Snort uses multiple configur-
ations/contexts). After this internal preparation, the
different callback handlers are registered.

The _dpd.addPreproc service adds the prepro-
cessor routine IPv6_Process as a preprocessor (fig-
ure 29). Snort holds all preprocessor callbacks as a
linked list, so the second argument indicates where
the preprocessor is inserted.

The different PRIORITY_» symbols provide a simple
way to influence, but not to control, the order of
preprocessors. Preprocessors with the same priority
are simply added behind one another (in order of
their configuration/registration) and static (i. e. Snort
built-in) preprocessors take precedence over dynamic
plugins. For example if the normalize_ip6 prepro-
cessor is used, it would still run before any dy-
namic plugin because it also uses PRIORITY_FIRST
and is added first. — Most importantly the chosen
priority decides whether the plugin receives frag-
ment packets (as it does with PRIORITY_FIRST)
or not (as would be the case with the alternatives
PRIORITY_NORMALIZE or PRIORITY_NETWORK).
This is because the frag3 preprocessor uses the second
priority PRIORITY_NORMALIZE and disables all fol-
lowing preprocessors for non-UDP fragments as an
optimization.

The third argument (PP_IPv6) registers a flag bit to
identify the preprocessor. This is used to selectively
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void IPv6_Init (char xargs)

{
struct IPv6_State =context;
struct IPv6_Config xconfig;
context = (struct IPv6_State =) calloc(l, sizeof
config = (struct IPv6_Config x) calloc(l, sizeof
// allocate all other structures ...

IPv6_Parse (args, config);
/)

sfPolicyUserPolicySet (ipv6_config,
sfPolicyUserDataSetCurrent (ipv6_config, context);
_dpd.addPreproc (IPv6_Process, PRIORITY_FIRST,

_dpd.registerPreprocStats ("ipvée", IPv6_PrintStats);
#ifdef PERF_PROFILING

_dpd.addPreprocProfileFunc ("ipvé6",
#endif

PP_IPvV6,

(void ) &ipv6PerfStats,

(struct IPvé6_State));
(struct IPv6_Config));

_dpd.getParserPolicy());

PROTO_BIT__IP);

0, _dpd.totalPerfStats);

_dpd.preprocOptRegister ("ipv", IPv6_Rule_Init, IPv6_Rule_Eval,

free, IPv6_Rule_Hash,
_dpd.preprocOptRegister ("ip6_tclass",
free, IPv6_Rule_Hash, IPv6_Rule_KeyCompare,

IPv6_Rule_KeyCompare,
IPv6_Rule_Init,

NULL, NULL);
IPv6_Rule_Eval,
NULL, NULL);

// register all other rule options with same handlers ...

Figure 29: Plugin initialization and registration in spp_ipv6.c

enable or disable preprocessors for a given packet.
Snort provides a field of 32bits and every estab-
lished preprocessor is associated with one of the 23
currently assigned bits. When processing a packet,
the preprocessors’ flags are matched against this bit-
field (u_int32_t preprocessor_bit_mask; in
struct _SFSnortPacket) to decide whether the
preprocessor is called or skipped.

The fourth argument is a selector, it indicates that
a preprocessor only wants to be called for certain
types of packets. — The IPv6 preprocessor uses the
value PROTO_BIT__IP to get called for all IP pack-
ets (which is a tiny bit better than PROTO_BIT__ALL
because the latter would also give access to ARP pack-
ets).

Besides the main functionality, a few minor handlers
are registered for statistics and profiling. Among them
the IPv6_PrintStats function is registered with
registerPreprocStats to be called when Snort
exits. It will then print some (hopefully) informative
numbers about processed packets (cf. figure 30).

The last registration provides the data structure
ipv6PerfsStats for preprocessor performance pro-
filing. This feature has to be enabled at compile
time, hence is conditionally compiled depending on
the definition of PERF_PROFILING. If it is enabled
and also activated (using the configuration statement
config profile_preprocs) then Snort will col-
lect internal profiling data for preprocessor calls.

This registration affects only the profiling of pre-
processor calls. Snort’s detection engine also collects
profiling data of all rule option evaluations, but ag-
gregates all preprocessor rule options into one entry
preproc_rule_options. There is no way to influ-
ence this data collection or to get more detailed in-
formation.

Snort prints a summary statistics of the collected pro-
filing data when the program terminates, an example

is shown in figure 34 (on page 446).

18.1.2 Rule Option Handler Registration

The rule options do not access any of the prepro-
cessor’s configuration or state data. So they are quite
independent from the preprocessor part, except they
are registered in the preprocessor initialization hand-
ler.

The service _dpd.preprocOptRegister is used
to add rule options, receiving the so created option
keyword as a first argument. The IPv6 plugin re-
gisters its different rule options (as listed in table 3),
but uses the same handler functions for all of them
(cf. figure 29): the first one (IPv6_Rule_Init) ini-
tializes one instance of a rule option, the second one
(IPv6_Rule_Eval) applies a rule option instance
to a packet, and the third one removes the instance
(free). The next two handlers (the fifth and sixth,
IPv6_Rule_Hash and IPv6_Rule_KeyCompare)
are also provided for hashing and comparison (as ex-
plained in the API description, section 15.2). The call-
backs for the custom OTN handler and fast pattern
matcher are not used.

18.2 Rule Option Initialization

All rule options are registered with the same
handlers: every rule option’s “entry point” is the
IPv6_Rule_Init, which is called when the config-
uration parser encounters an ip6_x option as part
of a rule. The function parses the option’s para-
meter and allocates a data object (of type struct
IPv6_RuleOpt_Data, cf. figure 31) to store all
parsed values of this option instance in memory. For
most options the instance simply encodes the used
option, the used comparison operator, and the value
to compare against.
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IPv6 statistics:
4979660 seen Packets
0 invalid Packets
0 Fragments
143197 IPv6
17276 ICMPv6
17438 UDP
107457 TCP
0 SCTP
0 Mobile IPV6
0 Encapsulated
1026 Other Upper Layer

5 router solicitation
176 router announcement
4981 neighbour solicitation
3252 neighbour announcement
270 Mcast query
5556 Mcast report
197 dst unreachable
2839 Other

Snort exiting

Figure 30: IPv6 preprocessor statistics output.

struct IPv6_RuleOpt_Data {
enum IPv6_RuleOpt_Type type:4;
u_int8_t op:4;
union {
u_int32_t number;
struct { // for ipé6_optval
u_int8_t ext_type;
u_int8_t opt_type;
u_intl6_t opt_value;
} exthdr;
} opt;
Vi

Figure 31: Rule option data structure in spp_ipv6.h

After IPv6_Rule_Init returns, the Snort parser
will call TPv6_Rule_Hash and on collision also
IPv6_Rule_KeyCompare. This is to check whether
the created object instance is equal to any previously
created instance (instances are equal if they represent
the same option, with the same modifier, and the same
value, cf. figure 32). — In case of equality it is redund-
ant and removed; otherwise the instance, including
the data object and a pointer to the registered evalu-
ation function, is inserted into the rule evaluation tree
(cf. section 15.2).

18.3 Rule Option Evaluation

At runtime all rule option evaluation is handled by
the registered evaluation function IPv6_Rule_Eval.
The detection engine will call it and pass the current
packet and the instance’s data object as arguments. So
the evaluation will read the instance data and perform
the appropriate comparison.

The following action is determined by the instance’s
rule type and for most rules this means the appropri-
ate field in the packet is compared to the value us-
ing the operator of the rule option instance (number
and op). A little more overhead is induced by the ex-
tension header and neighbor discovery option tests:
these have to iterate through all present extension
headers (or neighbor discovery options).

18.4 Preprocessor Alerts and Neighbor
Discovery Tracking

At runtime the registered preprocessor function
IPv6_Process receives all ICMPv6 packets for in-
spection.

The main functionality, which cannot be implemen-
ted with rule options, is tracking neighbor discovery
protocol messages. This enables the plugin to keep its
own model or network view of all active nodes on-
link. Using this model it can issue alerts whenever
the advertised routing configuration changes, a node
enters the local network, or a duplicate address detec-
tion fails.

The plugin remembers every node on-link with its
MAC address, IP address, and the last time it was seen
on the network. It was decided to model a node as the
combination of a MAC and IP address to allow for
multiple nodes using the same MAC address (as is the
case with virtualization), i. e. there are multiple entries
for normal hosts with both link-local and global ad-
dresses. Nodes are categorized into three groups: un-
confirmed (for new addresses in DAD), routers, and
“normal” hosts; each one with its own data structure
for fast lookup, currently implemented as red-black
trees.

The distinction between unconfirmed/tentative and
confirmed IP addresses enables the detection of
denial-of-service attacks against the neighborhood
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static int IPv6_Rule_KeyCompare (void %1, void =r)
{
struct IPv6_RuleOpt_Data xleft =
struct IPv6_RuleOpt_Data xright =

if (left && right
&& left->type == right->type
&& left->op == right->op
&& left->opt.number == right->opt.number) {
return PREPROC_OPT_EQUAL;
}
return PREPROC_OPT_NOT_EQUAL;

(struct IPv6_RuleOpt_Data =x)1;
(struct IPv6_RuleOpt_Data x)r;

Figure 32: Rule option instance comparison spp_ipv6_ruleopt.c

struct IPv6_State

struct IPv6_Nodes_head xrouters

struct IPv6_Nodes_head

struct IPv6_Node

struct IPv6_Nodes_head xhosts

struct IPv6_Statistics xstat
struct IPv6_Config xconfig

struct RB_HEAD (IPv6_Node)data
struct IPv6_Nodes_head xunconfirmed|[—|u_int32_t entry_limit

u_int32_t entry_counter

RB_ENTRY (IPv6_Node)entries
Au_int8_t ether_source[6]
sfip_t ip

time_t next_expire

1|

struct IPv6_Statistics

uint32_t pkt_seen
uint32_t pkt_fragments
uint32_t pkt_icmpvé6

struct IPv6_Config

L

u_int32_t max_routers

u_int32_t max_hosts

u_int32_t max_unconfirmed

struct MAC_Entry_head xrouter_whitelist
struct MAC_Entry_head xhost_whitelist

Figure 33: Data structures to keep the preprocessor state (configuration, statistics, and network model)

cache and against duplicate address detection. The
use of separate data structures also facilitates a faster
lookup for common ICMPv6 message processing
(e.g. the number of routers will be very small and
checking a router advertisement will not have to
search through the larger storage tree for normal
hosts).

To be confirmed, i.e. to be moved from the uncon-
firmed to the host state, a host has to send an ICMPv6
packet (appear as source address), then receive one or
more ICMPv6 packets (appear as a destination), and
later send another ICMPv6 packet of its own (appear
as source address). This simple message exchange oc-
curs whenever a host is active, because it has to send
and receive the ICMPv6 messages for duplicate ad-
dress detection, address resolution, and neighbor un-
reachability detection. On the other hand the source
addresses of simple flooding or spoofing attacks will
remain in the unconfirmed state because the fake ad-
dresses are just announced once.

It has to be emphasized that this model is very simple
and is designed to prevent very simple (flooding) at-
tacks. Determined attackers can circumvent the pro-
tection by keeping their own state; then they can send
multiple messages with the same source and destina-
tion IP addresses to better simulate the behaviour of
a real node. As with most countermeasures, the main
goal here is not to prevent all flooding attacks (which
is not possible), but to change the cost-effectiveness

ratio of these attacks. Even simple measures drastic-
ally reduce this ratio, forcing an attacker to either use
less effective attacks or to expend more resources for
the same effect.

To protect the plugin from memory exhaustion due
to denial-of-service attacks, all dynamic data struc-
tures use an element counter. The max_routers,
max_hosts, and max_unconfirmed configuration
options specify how many nodes are tracked at any
time. When one of the trees has reached this capa-
city an alarm is generated and all subsequent nodes
are ignored (because they cannot be added). An ex-
piry function is called periodically (intentionally not
on demand, as it would only add system load in a
denial-of-service situation) and purges node entries
that have been inactive for several hours.

Other parts of the IPv6_state object are the config-
uration options and some counters to print the statist-
ics at program exit (cf. figure 33).

18.5 Performance and Resiliency

Preliminary concerns about the computational costs
of such a plugin turned out to be unfounded. Because
Snort’s decoder processes every packet and fills the
struct _SFPacket structure, the plugin itself has
to perform very little computation and only has to de-
code neighbor discovery options on its own.

All rule options build upon the readily decoded
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packet representation; — except for the ip6_rh and
the ip6_nd_option options, which require addi-
tional decoding of routing headers and neighbor dis-
covery options. These might be more expensive be-
cause they have to examine a potentially large num-
ber of extension headers and options; thus their
runtime is not constant but bound by O(n) with n
being the number of extension headers and options
therein (or in case of neighbor discovery options n be-
ing the number of included options). In normal op-
eration this does not have any significant impact as
the number of defined extensions and options is small
and very few packets contain any extension headers
or options at all. But in theory this makes the plu-
gin vulnerable to similar denial-of-service attacks as
routers (cf. section 5.2).

The preprocessor’s NDP tracking is more expensive,
because it requires several memory lookups to check
the node entry, possibly memory allocation to add
new node entries, and periodic purging to free stale
node entries. This may be a concern for very big sub-
nets or when using Snort in inline mode; but in prac-
tice the cost is relatively small and well below that of
the decoder or the fragmentation and streaming pre-
processors (cf. figure 34).

For some neighbor discovery messages their content
is verified, for example to detect whether router ad-
vertisement parameters have changed. It was decided
to limit these checks to simple comparisons, because
they should not open new denial-of-service attack
vectors. Specifically the plugin does not verify SEND
signatures.

So as a result the plugin’s resource usage is similar to
that of other Snort plugins. As such it does not require
special consideration and it should be possible to add
the plugin to every existing Snort installation, assum-
ing deployed hardware is adequate for the network
bandwidth to monitor.

19 Conclusion

The IPv6 protocol has several weaknesses in its neigh-
bor discovery and autoconfiguration services. Most
of these problems arise from the unsolved early au-
thentication problem and the implicit assumption
that all link-local nodes are trustworthy. Thus, an at-
tacker with physical network access and control over
a connected node is usually able to assume a man-
in-the-middle position and also to perform various
denial-of-service attacks against particular hosts or
the router.

In exceptional cases, a trusted network can be estab-
lished with an expensive combination of link-layer ac-
cess control and cryptographic authentication of all
devices. However, in most cases, the only feasible
precaution is a separation into multiple subnets to
confine every attack, and the only practical defense
is a fast detection of the attack and the responsible
device.

The evaluation shows that no current open source IDS
product has sufficiently advanced IPv6 support to de-
tect the documented attacks. Even though previous
research projects wrote special purpose tools to mon-
itor IPv6 neighbor discovery, these tools are rarely de-
ployed because they require additional maintenance
and do not integrate into the existing infrastructure.

The new IPv6 plugin was developed to extend
the Snort IDS with integrated IPv6-specific detec-
tion routines. It adds an neighbor discovery tracking
mechanism to alert when new hosts and routers ap-
pear on-link. It also provides additional rule options
that expose IPv6 specific header fields to the Snort de-
tection module. The rule options facilitate the writ-
ing of new detection signatures using the flexibility
of Snort’s rule language, for example to detect attacks
from the THC toolkit. This integration into the Snort
infrastructure facilitates an easy deployment and in-
tegration into existing IDS setups.
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Table 3: Snort rule options to test IPv6 packets

Field Option Format Modifiers (x) new'® Note
ipv: *n; =1l <>" & |/
Version
Traffic Class tos: %n;
Traffic Class ip6_tclass: *n; & v
Flow Label ip6_flow: *n; & v
Payload Length dsize: *n;
dsize:
min<>max;
Next Header ip_proto: *n; tests upper-layer protocol,
i. e. with extension headers it tests
the Next Header field of the last
extension header."
Next Header ip6_exthdr: *n; tests presence of extension header n
(ignoring the upper-layer protocol)
Hop Limit ttl: #n;
ttl: min-max;
Source/Destination sameip; matches if Source and Destination
Address Address are identical.
Routing Headers ip6_rh: *n; tests the routing header type
Fragmentation fragoffset: *n; tests the fragment offset
Header?

Extension Headers

Extension Headers

Hop-by-Hop/
Destination
Options
Hop-by-Hop/
Destination
Options
Neighbor
Discovery
Neighbor
Discovery

ip6_extnum: *n;

ip6_ext_ordered;
ip6_ext_ordered: x;

ip6_option: *o;
ip6_option:
*xe.o0;

ip6_optval: e.oxn; =

icmp6_nd;
icmp6_nd: %;

icmp6_nd_option: xo=

tests the number of extension
headers

tests whether all extension headers
occur only once and in the
recommended order

tests for the presence of an option
type o in any extension header or in
a specific extension header e

tests for the value x*! in option

e.o?

matches ICMPv6 neighbor
discovery messages®
tests the neighbor discovery option

type o

18 Options marked with v/are implemented in the IPv6 preprocessor. Other options are built into Snort.

19 Functionality overlaps with the protocol selector in the rule’s header, which selects ip (matches IPv4 and IPv6), tcp, udp, or
icmp (matches ICMP and ICMPv6) packets.

20 Snort also includes the options fragbits and id to access IPv4 fragmentation bits and the Identification field. These are not included
in this table because they do not work for IPv6 packets. — A patch to support the fragbits option was written and submitted to

SourceFire.

21 Option have variable lenghts. The current implementation only uses 16 bit values for x and compares them to the first two octets of
the option. — This is not sufficient for all possible values (e. g. for the Jumbogram option with a 32 bit value.)

22 The = operator is a valid modifier for all ip6_ options. But only the ip6_optval option requires it as a seperator. — In all other cases
the test for equality is the default, so the operator is redundant (i.e. ip6_extnum: 2; and ip6_extnum: =2; are the same).

23 Including SEND and Mobile IPv6 messages. ip6_nd; is basically a shortcut to select/negate the ICMPv6 types 133-137, 141-142,

147-149, or 154.
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