
Magdeburger Journal zur Sicherheitsforschung

Gegründet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher und Jörg Sambleben
Erschienen im Magdeburger Institut für Sicherheitsforschung

This article appears in the special edition »In Depth Security – Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Java’s SSLSocket: How Bad APIs Compromise Security

Georg Lukas

Internet security is hard. TLS is almost impossible. Implementing TLS correctly in Java is »Nightmare!«. This
paper will show how a badly designed security API introduced over 15 years ago, combined with misleading
documentation and developers unaware of security challenges, causes modern smartphone applications to be
left exposed to Man-in-the-Middle attacks.

Citation: Lukas, G. (2015). Java’s SSLSocket: How Bad APIs Compromise Security. Magdeburger Journal
zur Sicherheitsforschung, 1, 506–513. Retrieved March 20, 2015, from http : / / www. sicherheitsforschung -
magdeburg.de/publikationen.html
Version 2015/03/20 21:17

http://www.sicherheitsforschung-magdeburg.de/publikationen.html
http://www.sicherheitsforschung-magdeburg.de/publikationen.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 507

1 Abstract

Internet security is hard. TLS1 is almost impossible.
Implementing TLS correctly in Java is Nightmare!
While the higher-level HttpsURLConnection2 and
Apache’s DefaultHttpClient3 do it (mostly) right,
direct users of Java SSL sockets (SSLSocket4/
SSLEngine5, SSLSocketFactory6) are left ex-
posed to Man-in-the-Middle attacks, unless the ap-
plication manually checks the hostname against the
certificate or employs certificate pinning.
The SSLSocket7 documentation claims that the
socket provides »Integrity Protection«, »Authentic-
ation«, and »Confidentiality«, even against active
wiretappers. That impression is underscored by rig-
orous certificate checking performed when connect-
ing, making it ridiculously hard to run develop-
ment/test installations. However, these checks turn
out to be completely worthless against active MitM
attackers, because SSLSocket will happily accept
any valid certificate (like for a domain owned by
the attacker). Due to this, many applications using
SSLSocket can be attacked with little effort.
This problem has8 been9 written10 about11, but CVE-2014-
507512 shows that it can not be stressed enough.

1.1 Affected Applications

This problem affects applications that make use of
SSL/TLS, but not HTTPS. The best candidates to look
for it are therefore clients for application-level pro-
tocols like e-mail (POP3/IMAP), instant messaging
(XMPP), file transfer (FTP). CVE-2014-507513 is the re-
spective vulnerability of the Smack XMPP client lib-
rary, so this is a good starting point.

1 http://tools.ietf.org/html/rfc5246 r. 2014-03-11

2 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
HttpsURLConnection.html r. 2014-03-11

3 http://hc.apache.org/httpcomponents-client-ga/httpclient/
apidocs/org/apache/http/impl/client/DefaultHttpClient.
html r. 2014-03-11

4 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLSocket.html r. 2014-03-11

5 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLEngine.html r. 2014-03-11

6 http://docs.oracle.com/javase/8/docs/api/javax/net/
ssl/SSLSocketFactory.html#createSocket-java.net.Socket-
java.lang.String-int-boolean- r. 2014-03-11

7 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLSocket.html r. 2014-03-11

8 http://kevinlocke.name/bits/2012/10/03/ssl-certificate-
verification-in-dispatch-and-asynchttpclient/ r. 2014-03-11

9 https://developer.android.com/training/articles/security-
ssl.html#WarningsSslSocket r. 2014-03-11

10 http://tersesystems.com/2014/03/23/fixing-hostname-
verification/ r. 2014-03-11

11 http://stackoverflow.com/a/18174689/539443 r. 2014-03-11

12 http://op-co.de/CVE-2014-5075.html r. 2014-03-11

13 http://op-co.de/CVE-2014-5075.html r. 2014-03-11

1.1.1 XMPP Clients

XMPP clients based on Smack (which was fixed on
2014-07-2214):

• ChatSecure15 (fixed16 in 13.2.0-beta1)
• GTalkSMS17 (contacted on 2014-07-28)
• MAXS18 (tracker issue19, fixed in 0.0.1.1820)
• yaxim21 and Bruno22 (fixed in 0.8.823)
• undisclosed Android application (contacted on 2014-

07-21)

Other XMPP clients:

• babbler24 (another XMPP library; fixed on 2014-
07-2725)

• Conversations26 (Android client, custom XMPP
implementation, fixed in version 0.527)

• Sawim28 (Android client, contacted on 2014-07-
22)

• Stroke29 (another XMPP client library, fixed30 in
git)

• Tigase31 (contacted on 2014-07-27)

1.1.2 Not Vulnerable Applications

The following applications have been checked as well,
and contained code to compensate for SSLSockets
shortcomings:

• Jitsi32 (OSS conferencing client)
• K9-Mail33 (Android e-Mail client)
• Xabber34 (Based on Smack, but using its own

hostname verification)

14 https://github.com/igniterealtime/Smack/commit/
d35fd16a21e2aa942a0a815762f52bf473cd5eff r. 2014-03-11

15 https://guardianproject.info/apps/chatsecure r. 2014-03-11

16 https://github.com/guardianproject/ChatSecureAndroid/
commit/3f150daded7461255b9d51bfc59ff91f8a77ed81 r. 2014-
03-11

17 http://code.google.com/p/gtalksms/ r. 2014-03-11

18 http://projectmaxs.org/homepage/ r. 2014-03-11

19 https://projectmaxs.atlassian.net/browse/MAXS-25 r. 2014-
03-11

20 https://social.geekplace.eu/notice/2139 r. 2014-03-11

21 https://yaxim.org/ r. 2014-03-11

22 http://yaxim.org/bruno r. 2014-03-11

23 https://yaxim.org/blog/2014/08/04/yaxim-0-dot-8-8-
important-security-update/ r. 2014-03-11

24 http://babbler-xmpp.blogspot.de/ r. 2014-03-11

25 https://bitbucket.org/sco0ter/babbler/commits/
359b1275c6bec8f0502320e57a2489dba9b177ab r. 2014-03-11

26 https://github.com/siacs/Conversations r. 2014-03-11

27 https://github.com/siacs/Conversations/commit/
4607e2c546fec78d7ae0ca8ce779a2267e6edbe2 r. 2014-03-11

28 http://sawim.ru/ r. 2014-03-11

29 http://swift.im/stroke/ r. 2014-03-11

30 http://swift.im/git/stroke/commit/?id=
77959428b7f4150569dda9fac35becf7e10b96c7 r. 2014-03-11

31 http://www.tigase.org/ r. 2014-03-11

32 https://jitsi.org/ r. 2014-03-11

33 http://code.google.com/p/k9mail/ r. 2014-03-11

34 https://github.com/redsolution/xabber-android r. 2014-03-11

http://tools.ietf.org/html/rfc5246
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLEngine.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLEngine.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocketFactory.html#createSocket-java.net.Socket-java.lang.String-int-boolean-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://kevinlocke.name/bits/2012/10/03/ssl-certificate-verification-in-dispatch-and-asynchttpclient/
http://kevinlocke.name/bits/2012/10/03/ssl-certificate-verification-in-dispatch-and-asynchttpclient/
https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket
https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket
http://tersesystems.com/2014/03/23/fixing-hostname-verification/
http://tersesystems.com/2014/03/23/fixing-hostname-verification/
http://stackoverflow.com/a/18174689/539443
http://op-co.de/CVE-2014-5075.html
http://op-co.de/CVE-2014-5075.html
https://github.com/igniterealtime/Smack/commit/d35fd16a21e2aa942a0a815762f52bf473cd5eff
https://github.com/igniterealtime/Smack/commit/d35fd16a21e2aa942a0a815762f52bf473cd5eff
https://guardianproject.info/apps/chatsecure
https://github.com/guardianproject/ChatSecureAndroid/commit/3f150daded7461255b9d51bfc59ff91f8a77ed81
https://github.com/guardianproject/ChatSecureAndroid/commit/3f150daded7461255b9d51bfc59ff91f8a77ed81
http://code.google.com/p/gtalksms/
http://projectmaxs.org/homepage/
https://projectmaxs.atlassian.net/browse/MAXS-25
https://social.geekplace.eu/notice/2139
https://yaxim.org/
http://yaxim.org/bruno
https://yaxim.org/blog/2014/08/04/yaxim-0-dot-8-8-important-security-update/
https://yaxim.org/blog/2014/08/04/yaxim-0-dot-8-8-important-security-update/
http://babbler-xmpp.blogspot.de/
https://bitbucket.org/sco0ter/babbler/commits/359b1275c6bec8f0502320e57a2489dba9b177ab
https://bitbucket.org/sco0ter/babbler/commits/359b1275c6bec8f0502320e57a2489dba9b177ab
https://github.com/siacs/Conversations
https://github.com/siacs/Conversations/commit/4607e2c546fec78d7ae0ca8ce779a2267e6edbe2
https://github.com/siacs/Conversations/commit/4607e2c546fec78d7ae0ca8ce779a2267e6edbe2
http://sawim.ru/
http://swift.im/stroke/
http://swift.im/git/stroke/commit/?id=77959428b7f4150569dda9fac35becf7e10b96c7
http://swift.im/git/stroke/commit/?id=77959428b7f4150569dda9fac35becf7e10b96c7
http://www.tigase.org/
https://jitsi.org/
http://code.google.com/p/k9mail/
https://github.com/redsolution/xabber-android

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 508

1.2 Background: Security APIs in Java

The amount of vulnerable applications can be eas-
ily explained after a deep dive into the security
APIs provided by Java (and its offsprings). There-
fore, this section will handle the dirty details of trust
(mis)management in the most important implement-
ations: old Java, new Java, Android and in Apache’s
HttpClient.

1.2.1 Java SE up to and including 1.6

When network security was added into Java 1.4 with
the JSSE35 (and we all know how well security-as-
an-afterthought works), two distinct APIs have been
created for certificate verification36 and for hostname
verification37. The rationale for that decision was
probably that the TLS/SSL handshake happens at
the socket layer, whereas the hostname verification
depends on the application-level protocol (HTTPS38

at that time). Therefore, the X509TrustManager39

class for certificate trust checks was integrated into
the low-level SSLSocket and SSLEngine classes,
whereas the HostnameVerifier40 API was only in-
corporated into the HttpsURLConnection41.
The API design was not very future-proof either:
X509TrustManager’s checkClientTrusted()42

and checkServerTrusted()43 methods are only
passed the certificate and authentication type para-
meters. There is no reference to the actual SSL con-
nection or its peer name. The only workaround to al-
low hostname verification through this API is by cre-
ating a custom TrustManager for each connection,
and storing the peer’s hostname in it. This is neither
elegant nor does it scale well with multiple connec-
tions.
The HostnameVerifier on the other hand has
access to both the hostname and the session,
making a full verification possible. However,
only HttpsURLConnection is making use of a
HostnameVerifier (and is only asking it if it de-
termines a mismatch between the peer and its cer-
tificate, so the default HostnameVerifier always

35 http://en.wikipedia.org/wiki/Java_Secure_Socket_Extension
r. 2014-03-11

36 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
X509TrustManager.html r. 2014-03-11

37 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
HostnameVerifier.html r. 2014-03-11

38 http://tools.ietf.org/html/rfc2818 r. 2014-03-11

39 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
X509TrustManager.html r. 2014-03-11

40 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
HostnameVerifier.html r. 2014-03-11

41 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
HttpsURLConnection.html r. 2014-03-11

42 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
X509TrustManager.html#checkClientTrusted-java.security.cert.
X509Certificate:A-java.lang.String- r. 2014-03-11

43 http://docs.oracle.com/javase/8/docs/api/javax/
net/ssl/X509TrustManager.html#checkServerTrusted-
java.security.cert.X509Certificate:A-java.lang.String- r. 2014-
03-11

fails).
Besides of the default HostnameVerifier being
unusable due to always failing, the API has another
subtle surprise: while the TrustManager methods
fail by throwing a CertificateException44,
HostnameVerifier.verify() simply returns
false if verification fails.
As the API designers realized that users of the raw
SSLSocket might fall into a certificate verification
trap set up by their API, they added a well-buried
warning into the JSSE reference guide for Java 545:

IMPORTANT NOTE: When using
raw SSLSockets/SSLEngines you
should always check the peer’s cre-
dentials before sending any data. The
SSLSocket/SSLEngine classes do not
automatically verify, for example, that the
hostname in a URL matches the hostname
in the peer’s credentials. An application
could be exploited with URL spoofing if the
hostname is not verified.

Of course, URLs are only a thing in HTTPS, but the
point remains. . . well hidden. The SSLSocket46 ref-
erence article on the other hand does not contain any
warnings, it implies that the application developer is
doing the right thing.
And even if the hidden warning reaches the de-
veloper, there is no hint about how to implement the
peer credentials checks. There is no API class that
would perform this tedious and error-prone task, and
implementing it correctly requires a Ph.D. degree in
rocket surgery, as well as deep knowledge of some47

related48 Internet49 standards50.

1.2.2 Apache HttpClient

The Apache HttpClient library51 is a full-featured
HTTP client written in pure Java, adding flexibility
and functionality in comparison to the default HTTP
implementation.
The Apache library developers came up with
their own API interface for hostname verification,
X509HostnameVerifier52, that also happens to in-
corporate Java’s HostnameVerifier interface. The
new methods added by Apache are expected to throw

44 http://docs.oracle.com/javase/8/docs/api/java/security/
cert/CertificateException.html r. 2014-03-11

45 http://docs.oracle.com/javase/1.5.0/docs/guide/security/
jsse/JSSERefGuide.html#ClassRelationship r. 2014-03-11

46 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLSocket.html r. 2014-03-11

47 http://tools.ietf.org/html/rfc2459 r. 2014-03-11

48 http://tools.ietf.org/html/rfc2818 r. 2014-03-11

49 http://tools.ietf.org/html/rfc5246 r. 2014-03-11

50 http://tools.ietf.org/html/rfc6125 r. 2014-03-11

51 http://hc.apache.org/httpcomponents-client-ga/ r. 2014-03-
11

52 http://hc.apache.org/httpcomponents-client-ga/httpclient/
apidocs/org/apache/http/conn/ssl/X509HostnameVerifier.
html r. 2014-03-11

http://en.wikipedia.org/wiki/Java_Secure_Socket_Extension
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HostnameVerifier.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HostnameVerifier.html
http://tools.ietf.org/html/rfc2818
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HostnameVerifier.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HostnameVerifier.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkClientTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkClientTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkClientTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkServerTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkServerTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509TrustManager.html#checkServerTrusted-java.security.cert.X509Certificate:A-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertificateException.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertificateException.html
http://docs.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#ClassRelationship
http://docs.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#ClassRelationship
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLSocket.html
http://tools.ietf.org/html/rfc2459
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6125
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/X509HostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/X509HostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/X509HostnameVerifier.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 509

SSLException when verification fails, while the old
method still returns true or false, of course. It is
hard to tell if this interface mixing is adding confu-
sion, or reducing it. One way or the other, it results in
the appropriate glue code, see Fig. 1.
Based on that interface,
AllowAllHostnameVerifier53,
BrowserCompatHostnameVerifier54, and
StrictHostnameVerifier55 were created, which
can actually be plugged into anything expecting
a plain HostnameVerifier. The latter two also
actually perform hostname verification, as opposed
to the default verifier in Java, so they can be used
wherever appropriate. Their difference is:

The only difference between
BROWSER_COMPATIBLE and STRICT
is that a wildcard (such as »*.foo.com«)
with BROWSER_COMPATIBLE matches all
subdomains, including ”a.b.foo.com“.

If you can make use of Apache’s HttpClient library,
just plug in one of these verifiers as follows to ensure
hostname verification:

1 sslSocket = ...;
2 sslSocket.startHandshake();
3 HostnameVerifier verifier = new
4 StrictHostnameVerifier();
5 if (!verifier.verify(serviceName,
6 sslSocket.getSession())) {
7 throw new CertificateException
8 ("Server failed to authenticate as"
9 + serviceName);

10 }
11 // NOW you can send and receive data!

1.2.3 Android

Android’s designers must have been well aware of
the shortcomings of the Java implementation, and
the problems that an application developer might
encounter when testing and debugging. They cre-
ated the SSLCertificateSocketFactory56 class,
which makes a developer’s life really easy:

1. It is available on all Android devices, starting
with API level 1.

2. It comes with appropriate warnings about its se-
curity parameters and limitations:

Most SSLSocketFactory imple-
mentations do not verify the server’s
identity, allowing man-in-the-middle
attacks. This implementation does
check the server’s certificate hostname,

53 http://hc.apache.org/httpcomponents-client-ga/
httpclient/apidocs/org/apache/http/conn/ssl/
AllowAllHostnameVerifier.html r. 2014-03-11

54 http://hc.apache.org/httpcomponents-client-ga/
httpclient/apidocs/org/apache/http/conn/ssl/
BrowserCompatHostnameVerifier.html r. 2014-03-11

55 http://hc.apache.org/httpcomponents-client-ga/httpclient/
apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.
html r. 2014-03-11

56 http://developer.android.com/reference/android/net/
SSLCertificateSocketFactory.html r. 2014-03-11

but only for createSocket variants
that specify a hostname. When using
methods that use InetAddress or
which return an unconnected socket,
you MUST verify the server’s identity
yourself to ensure a secure connection.

3. It provides developers with two easy ways to dis-
able all security checks for testing purposes: a) a
static getInsecure() method (as of API level
8), and b)

On development devices, setprop
socket.relaxsslcheck yes by-
passes all SSL certificate and hostname
checks for testing purposes. This
setting requires root access.

4. Uses of the insecure instance are logged via adb:
Bypassing SSL security checks at
caller’s request

Or, when the system property is set:

*** BYPASSING SSL SECURITY CHECKS
(socket.relaxsslcheck=yes) ***

Some time in 2013, a training article57 about Secur-
ity with HTTPS and SSL was added, which also fea-
tures its own section for »Warnings About Using
SSLSocket Directly«, once again explicitly warning
the developer:

Caution: SSLSocket does not per-
form hostname verification. It is up
the your app to do its own host-
name verification, preferably by calling
getDefaultHostnameVerifier() with
the expected hostname. Further beware that
HostnameVerifier.verify() doesn’t
throw an exception on error but instead
returns a boolean result that you must
explicitly check.

Typos aside, this is very true advice. The article also
covers other common SSL/TLS related problems like
certificate chaining, self-signed certs and SNI, mak-
ing it a must read. The fact that it does not men-
tion the SSLCertificateSocketFactory is only
a little snag.

1.2.4 Java 1.7+

As of Java 1.7, there is a new abstract class
X509ExtendedTrustManager58 that finally unifies
the two sides of certificate verification:

Extensions to the X509TrustManager inter-
face to support SSL/TLS connection sensit-
ive trust management.

To prevent man-in-the-middle attacks, host-
name checks can be done to verify that
the hostname in an end-entity certificate

57 https://developer.android.com/training/articles/security-
ssl.html r. 2014-03-11

58 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
X509ExtendedTrustManager.html r. 2014-03-11

http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/BrowserCompatHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/BrowserCompatHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/BrowserCompatHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://developer.android.com/reference/android/net/SSLCertificateSocketFactory.html
http://developer.android.com/reference/android/net/SSLCertificateSocketFactory.html
https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509ExtendedTrustManager.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/X509ExtendedTrustManager.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 510

1 public final boolean verify(String host, SSLSession session) {
2 try {
3 Certificate[] certs = session.getPeerCertificates();
4 X509Certificate x509 = (X509Certificate) certs[0];
5 verify(host, x509);
6 return true;
7 } catch(SSLException e) { return false; }
8 }

Figure 1: Apache HttpClient X509HostnameVerifier Internal Code

matches the targeted hostname. TLS does
not require such checks, but some protocols
over TLS (such as HTTPS) do. In earlier ver-
sions of the JDK, the certificate chain checks
were done at the SSL/TLS layer, and the
hostname verification checks were done at
the layer over TLS. This class allows for the
checking to be done during a single call to
this class.

This class extends the checkServerTrusted and
checkClientTrusted methods with an additional
parameter for the socket reference, allowing the Trust-
Manager to obtain the hostname that was used for the
connection, thus making it possible to actually verify
that hostname.
To retrofit this into the old X509TrustManager
interface, all instances of X509TrustManager
are internally wrapped into an
AbstractTrustManagerWrapper that performs
hostname verification according to the socket’s
SSLParameters59. All this happens transparently,
all you need to do is to initialize your socket with the
hostname and then set the right parameters:
SSLParameters p = sslSocket
.getSSLParameters();
p.setEndpointIdentificationAlgorithm
(“HTTPS”);
sslSocket.setSSLParameters(p);

If you do not set the endpoint identification al-
gorithm, the socket will behave in the same way as in
earlier versions of Java, accepting any valid certificate
from any server name.
However, if you do run the above code, the cer-
tificate will be checked against the IP address or
hostname that you are connecting to. If the ser-
vice you are using employs DNS SRV60, the host-
name (the actual machine you are connecting to,
e.g. xmpp-042.example.com) might differ from
the service name (what the user entered, like
example.com). However, the certificate will be is-
sued for the service name, so the verification will
fail. As such protocols are most often combined with
STARTTLS, you will need to wrap your SSLSocket
around your plain Socket, for which you can use the
following code:

59 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLParameters.html r. 2014-03-11

60 http://en.wikipedia.org/wiki/SRV_record r. 2014-03-11

sslSocket=sslContext.getSocketFactory()
.createSocket(plainSocket, serviceName,
plainSocket.getPort(),
true);

1.2.5 API Confusion Conclusion

To summarize the different »platforms«:

• On Java 1.6 or earlier, no hostname verification
mechanisms are available.

• On Android, use
SSLCertificateSocketFactory61 and
be happy.

• If you have Apache HttpClient, add a
StrictHostnameVerifier.verify()62

call right after you connect your socket, and
check its return value!

• On Java 1.7 or newer, do not forget to set the right
SSLParameters63, so the runtime takes care of
hostname verification.

1.3 Java SSL In the Literature

There is a large amount of good and bad advice out
there, you just need to be a security expert to separate
the wheat from the chaff.

1.3.1 Negative Examples

The most expensive advice is free advice. And the In-
ternet is full of it. First, there is code to let Java trust
all certificates64, because self-signed certificates are a
subset of all certificates, obviously. Then, there is a
software engineer deliberately disable certificate val-
idation65, because all these security exceptions only
get into our way. Even after the Snowden revelations,

61 http://developer.android.com/reference/android/net/
SSLCertificateSocketFactory.html r. 2014-03-11

62 http://hc.apache.org/httpcomponents-client-ga/httpclient/
apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.
html r. 2014-03-11

63 http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLParameters.html r. 2014-03-11

64 http://runtime32.blogspot.de/2008/11/let-java-ssl-trust-all-
certificates.html r. 2014-03-11

65 http://www.nakov.com/blog/2009/07/16/disable-
certificate-validation-in-java-ssl-connections/ r. 2014-03-
11

http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html
http://en.wikipedia.org/wiki/SRV_record
http://developer.android.com/reference/android/net/SSLCertificateSocketFactory.html
http://developer.android.com/reference/android/net/SSLCertificateSocketFactory.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/StrictHostnameVerifier.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html
http://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLParameters.html
http://runtime32.blogspot.de/2008/11/let-java-ssl-trust-all-certificates.html
http://runtime32.blogspot.de/2008/11/let-java-ssl-trust-all-certificates.html
http://www.nakov.com/blog/2009/07/16/disable-certificate-validation-in-java-ssl-connections/
http://www.nakov.com/blog/2009/07/16/disable-certificate-validation-in-java-ssl-connections/

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 511

recipes for disabling SSL certificate validation66 are
still written. The suggestions are all very similar, and
all pretty bad.
Admittedly, an encrypted but unvalidated connection
is still a little bit better than a plaintext connection.
However, with the advent of free WiFi networks and
SSL MitM software, everybody with a little energy
can invade your »secure« connections, which you use
to transmit really sensitive information. The effect of
this can reach from funny over embarassing and up
to life-threatening, if you are a journalist in a crisis
zone.
The personal favorite of the author is this StackOver-
flow question67 about avoiding the certificate warn-
ing message in yaxim68, which is caused by Memoriz-
ingTrustManager69.
Fortunately, the situation on StackOverflow
has been improving over the years. Some
time ago, readers were overwhelmed with
DO_NOT_VERIFY70 HostnameVerifiers and
all-accepting DefaultTrustManagers71, where the
authors conveniently forgot to mention that their
code turns the big red »security« switch to OFF.
The better answers on StackOverflow at least come
with a warning72 or even suggest certificate pin-
ning73.

1.3.2 Positive Examples

In 2012, Kevin Locke has created74 a
proper HostnameVerifier using the internal
sun.security.util.HostnameChecker75 class
which seems to exist in Java SE 6 and
7. This HostnameVerifier is used with
AsyncHttpClient, but is suitable for other use-
cases as well.

66 http://mariuszprzydatek.com/2013/07/19/disabling-ssl-
certificate-validation/ r. 2014-03-11

67 http://stackoverflow.com/questions/20544193/avoid-accept-
unknown-certificate-warning-in-android-while-using-xmpp
r. 2014-03-11

68 https://yaxim.org r. 2014-03-11

69 https://github.com/ge0rg/MemorizingTrustManager/ r.
2014-03-11

70 http://stackoverflow.com/questions/995514/https-
connection-android/1000205#1000205 r. 2014-03-11

71 http://stackoverflow.com/questions/1828775/how-to-
handle-invalid-ssl-certificates-with-apache-httpclient/
1828840#1828840 r. 2014-03-11

72 http://stackoverflow.com/questions/2642777/trusting-all-
certificates-using-httpclient-over-https/4837230#4837230 r.
2014-03-11

73 http://stackoverflow.com/questions/2893819/telling-java-
to-accept-self-signed-ssl-certificate/2893932#2893932 r. 2014-
03-11

74 http://kevinlocke.name/bits/2012/10/03/ssl-certificate-
verification-in-dispatch-and-asynchttpclient/ r. 2014-03-11

75 http://www.docjar.com/docs/api/sun/security/util/
HostnameChecker.html r. 2014-03-11

Fahl et al.76 have analyzed77 the sad state of SSL in
Android apps in 2012. Their focus was on HTTPS,
where they did find a massive amount of applica-
tions deliberately misconfigured to accept invalid or
mismatching certificates (probably added during app
development). In a 2013 followup78, they have de-
veloped a mechanism to enable certificate checking
and pinning according to special flags in the applic-
ation manifest.
Will Sargent from Terse Systems has an79 excel-
lent80 series81 of82 articles83 on everything TLS, with
videos, examples and plentiful background informa-
tion, which is strongly recommended to watch.
There is even an excellent StackOverflow answer by
Bruno84, outlining the proper hostname validation
options with Java 7, Android and »other« Java plat-
forms, in a very concise way.

1.4 Mitigation Possibilities

So you are an app developer, and you get this pesky
CertificateException you could not care less
about. What can you do to get rid of it, in a secure
way? That depends on your situation.

1.4.1 Cloud-Connected App: Certificate Pinning

If your app is always connecting to known-in-
advance servers under you control (like only your
company’s »cloud«), employ Certificate Pinning85.
If you want a cheap and secure solution, create
your own Certificate Authority (CA)86 (and guard its
keys!), deploy its certificate as the only trusted CA
in the app, and sign87 all your server keys with it.
This approach provides you with the ultimate con-
trol over the whole security infrastructure, you do not
need to pay certificate extortion fees to greedy CAs,
and a compromised CA can not issue certificates that
would allow to MitM your app. The only drawback
is that you might not be as good as a commercial CA
at guarding your CA keys, and these are the keys to

76 http://android-ssl.org/ r. 2014-03-11

77 http://android-ssl.org/files/p50-fahl.pdf r. 2014-03-11

78 http://android-ssl.org/files/p49.pdf r. 2014-03-11

79 http://tersesystems.com/2014/01/13/fixing-the-most-
dangerous-code-in-the-world/ r. 2014-03-11

80 http://tersesystems.com/2014/03/20/fixing-x509-
certificates/ r. 2014-03-11

81 http://tersesystems.com/2014/03/22/fixing-certificate-
revocation/ r. 2014-03-11

82 http://tersesystems.com/2014/03/23/fixing-hostname-
verification/ r. 2014-03-11

83 http://tersesystems.com/2014/03/31/testing-hostname-
verification/ r. 2014-03-11

84 http://stackoverflow.com/a/18174689/539443 r. 2014-03-11

85 https://www.owasp.org/index.php/Certificate_and_Public_
Key_Pinning r. 2014-03-11

86 https://jamielinux.com/articles/2013/08/act-as-your-own-
certificate-authority/ r. 2014-03-11

87 https://jamielinux.com/articles/2013/08/create-and-sign-
ssl-certificates-certificate-authority/ r. 2014-03-11

http://mariuszprzydatek.com/2013/07/19/disabling-ssl-certificate-validation/
http://mariuszprzydatek.com/2013/07/19/disabling-ssl-certificate-validation/
http://stackoverflow.com/questions/20544193/avoid-accept-unknown-certificate-warning-in-android-while-using-xmpp
http://stackoverflow.com/questions/20544193/avoid-accept-unknown-certificate-warning-in-android-while-using-xmpp
https://yaxim.org
https://github.com/ge0rg/MemorizingTrustManager/
http://stackoverflow.com/questions/995514/https-connection-android/1000205#1000205
http://stackoverflow.com/questions/995514/https-connection-android/1000205#1000205
http://stackoverflow.com/questions/1828775/how-to-handle-invalid-ssl-certificates-with-apache-httpclient/1828840#1828840
http://stackoverflow.com/questions/1828775/how-to-handle-invalid-ssl-certificates-with-apache-httpclient/1828840#1828840
http://stackoverflow.com/questions/1828775/how-to-handle-invalid-ssl-certificates-with-apache-httpclient/1828840#1828840
http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https/4837230#4837230
http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-over-https/4837230#4837230
http://stackoverflow.com/questions/2893819/telling-java-to-accept-self-signed-ssl-certificate/2893932#2893932
http://stackoverflow.com/questions/2893819/telling-java-to-accept-self-signed-ssl-certificate/2893932#2893932
http://kevinlocke.name/bits/2012/10/03/ssl-certificate-verification-in-dispatch-and-asynchttpclient/
http://kevinlocke.name/bits/2012/10/03/ssl-certificate-verification-in-dispatch-and-asynchttpclient/
http://www.docjar.com/docs/api/sun/security/util/HostnameChecker.html
http://www.docjar.com/docs/api/sun/security/util/HostnameChecker.html
http://android-ssl.org/
http://android-ssl.org/files/p50-fahl.pdf
http://android-ssl.org/files/p49.pdf
http://tersesystems.com/2014/01/13/fixing-the-most-dangerous-code-in-the-world/
http://tersesystems.com/2014/01/13/fixing-the-most-dangerous-code-in-the-world/
http://tersesystems.com/2014/03/20/fixing-x509-certificates/
http://tersesystems.com/2014/03/20/fixing-x509-certificates/
http://tersesystems.com/2014/03/22/fixing-certificate-revocation/
http://tersesystems.com/2014/03/22/fixing-certificate-revocation/
http://tersesystems.com/2014/03/23/fixing-hostname-verification/
http://tersesystems.com/2014/03/23/fixing-hostname-verification/
http://tersesystems.com/2014/03/31/testing-hostname-verification/
http://tersesystems.com/2014/03/31/testing-hostname-verification/
http://stackoverflow.com/a/18174689/539443
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://jamielinux.com/articles/2013/08/act-as-your-own-certificate-authority/
https://jamielinux.com/articles/2013/08/act-as-your-own-certificate-authority/
https://jamielinux.com/articles/2013/08/create-and-sign-ssl-certificates-certificate-authority/
https://jamielinux.com/articles/2013/08/create-and-sign-ssl-certificates-certificate-authority/

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 512

your kingdom.
To implement the client side, you need to store the
CA cert in a key file, which you can use to create an
X509TrustManager that will only accept server cer-
tificates signed by your CA (Fig. 2).
If you rather prefer to trust the establishment (or if
your servers are to be used by web browsers as well),
you need to get all your server keys signed by an »offi-
cial« Root CA. However, you can still store that single
CA into your key file and use the above code. You
just won’t be able to switch to a different CA later on
if they try to extort more money from you.

1.4.2 User-configurable Servers (a.k.a. »Private
Cloud«): TOFU/POP

In the context of TLS, TOFU/POP is neither veget-
arian music nor frozen food, but stands for »Trust on
First Use / Persistence of Pseudonymity«.
The idea behind TOFU/POP is that when you con-
nect to a server for the first time, your client stores
its certificate, and checks it on each subsequent con-
nection. This is the same mechanism as used in SSH.
If you had no evildoers between you and the server
the first time, later MitM attempts will be discovered.
OpenSSH displays Fig. 3 on a key change.
In case you fell victim to a MitM attack the first time
you connected, you will see the nasty warning as soon
as the attacker goes away, and can start investigating.
Your information will be compromised, but at least
you will know it.
The problem with the TOFU approach is that it does
not mix well with the PKI88 infrastructure model used
in the TLS world: with TOFU, you create one key
when the server is configured for the first time, and
that key remains bound to the server forever (there is
no concept of key revocation).
With PKI, you create a key and request a certificate,
which is typically valid for one or two years. Before
that certificate expires, you must request a new cer-
tificate (optionally using a new private key), and re-
place the expiring certificate on the server with the
new one.
If you let an application »pin« the TLS certificate on
first use, you are in for a surprise within the next
year or two. If you »pin« the server public key, you
must be aware that you will have to stick to that key
(and renew certificates for it) forever. Of course you
can create your own, self-signed, certificate with a ri-
diculously long expiration time, but this practice is
frowned upon (for self-signing and long expiration
times).
Currently, some ideas89 exist about how to combine
PKI with TOFU, but the only sensible thing that an
app can do is to give a shrug and ask the user.

88 http://en.wikipedia.org/wiki/Public_key_infrastructure r.
2014-03-11

89 https://dev.guardianproject.info/projects/bazaar/wiki/
Chained_TLS_Cert_Verification r. 2014-03-11

Because asking the user is non-trivial from a back-
ground networking thread, the author has de-
veloped MemorizingTrustManager90 (MTM) for An-
droid. MTM is a library that can be plugged into your
apps’ TLS connections, that leverages the system’s
ability for certificate and hostname verification, and
asks the user if the system does not consider a given
certificate/hostname combination as legitimate. In-
ternally, MTM is using a key store where it collects
all the certificates that the user has permanently ac-
cepted.

1.4.3 Browser

If you are developing a browser that is meant to sup-
port HTTPS, please stop here, get a security expert
into your team, and only go on with her. This art-
icle has shown that using T LS is horribly hard even
if you can leverage existing components to perform
the actual verification of certificates and hostnames.
Writing such checks in a browser-compliant way is far
beyond the scope of this piece.

1.5 Outlook

1.5.1 DNS + TLS = DANE

Besides of TOFU/POP, which is not yet ready for TLS
primetime, there is an alternative approach to link the
server name (in DNS) with the server identity (as rep-
resented by its TLS certificate): DNS-based Authen-
tication of Named Entities (DANE)91.
With this approach, information about the server’s
TLS certificate can be added to the DNS database, in
the form of different certificate constraint records:

1. a CA constraint can require that the presented
server certificate MUST be signed by the refer-
enced CA public key, and that this CA must be
a known Root CA.

2. a service certificate constraint can define that the
server MUST present the referenced certificate,
and that certificate must be signed by a known
Root CA.

3. a trust anchor assertion is like a CA constraint, ex-
cept it does not need to be a Root CA known to
the client. This allows a server administrator to
run their own CA.

4. a domain issued certificate is analogous to a service
certificate constraint, but like in (2), there is no
need to involve a Root CA.

Multiple constraints can be specified to tighten the
checks, encoded in TLSA records (for TLS associ-
ation). TLSA records are always specific to a given
server name and port. For example, to make a se-
cure XMPP connection with zombofant.net, first

90 https://github.com/ge0rg/MemorizingTrustManager/ r.
2014-03-11

91 http://en.wikipedia.org/wiki/DNS-based_Authentication_
of_Named_Entities r. 2014-03-11

http://en.wikipedia.org/wiki/Public_key_infrastructure
https://dev.guardianproject.info/projects/bazaar/wiki/Chained_TLS_Cert_Verification
https://dev.guardianproject.info/projects/bazaar/wiki/Chained_TLS_Cert_Verification
https://github.com/ge0rg/MemorizingTrustManager/
http://en.wikipedia.org/wiki/DNS-based_Authentication_of_Named_Entities
http://en.wikipedia.org/wiki/DNS-based_Authentication_of_Named_Entities

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 9, Jahrgang 5, Band 1 (2015) 513

1 KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
2 ks.load(new FileInputStream(keyStoreFile), "keyStorePassword".toCharArray());
3 TrustManagerFactory tmf = TrustManagerFactory.getInstance("X509");
4 tmf.init(ks);
5 SSLContext sc = SSLContext.getInstance("TLS");
6 sc.init(null, tmf.getTrustManagers(), new java.security.SecureRandom());
7 // use ‘sc’ for your HttpsURLConnection / SSLSocketFactory / ...

Figure 2: Example for An Explicit List of Root CAs

1 @@@
2 @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
3 @@@
4 IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
5 Someone could be eavesdropping on you right now (man-in-the-middle attack)!
6 It is also possible that a host key has just been changed.

Figure 3: OpenSSH warning message

the XMPP SRV record (_xmpp-client._tcp) needs
to be obtained:

1 $ host -t SRV \
2 _xmpp-client._tcp.zombofant.net
3 _xmpp-client._tcp.zombofant.net has \
4 SRV record 0 0 5222 xmpp.zombofant.net.

Then, the TLSA record(s) for
xmpp.zombofant.net:5222 must be obtained:

1 $ host -t TLSA \
2 _5222._tcp.xmpp.zombofant.net
3 _5222._tcp.xmpp.zombofant.net \
4 has TLSA record 3 0 1 \
5 75E6A12CFE74A2230F3578D5E98C6F251AE2 \
6 043EDEBA09F9D952A4C1 C317D81D

This record reads as: the server is using a domain
issued certificate (3) with the full certificate (0) rep-
resented via its SHA-256 hash (1):
75:E6:A1:2C:FE:74:A2:23:
0F:35:78:D5:E9:8C:6F:25:
1A:E2:04:3E:DE:BA:09:F9:
D9:52:A4:C1:C3:17:D8:1D.
And indeed, if we check the server certificate us-
ing openssl s_client, the SHA-256 hash does
match:

1 Subject: CN=zombofant.net
2 Issuer: O=Root CA,\
3 OU=http://www.cacert.org, \
4 CN=CA Cert Signing Authority/ \
5 emailAddress=support@cacert.org
6 Validity
7 Not Before: Apr 8 07:25:35 2014 GMT
8 Not After : Oct 5 07:25:35 2014 GMT
9 SHA256 Fingerprint=75:E6:A1:2C:FE:74:\

10 A2:23:0F:35:78:D5:E9:8C:6F:25:1A:E2:\
11 04:3E:DE:BA:09:F9:D9:52:A4:C1:C3:17:\
12 D8:1D

Of course, this information can only be relied upon
if the DNS records are secured by DNSSEC92. And
DNSSEC can be abused by the same entities that
already can manipulate Root CAs and perform large-
scale Man-in-the-Middle attacks. However, this kind

92 http://en.wikipedia.org/wiki/Domain_Name_System_
Security_Extensions r. 2014-03-11

of attack is made significantly harder: while a typ-
ical Root CA list contains hundreds of entries, with
an unknown number of intermediate CAs each, and
it is sufficient to compromise any one of them to
screw you, with DNSSEC, the attacker needs to ob-
tain the keys to your domain (zombofant.net), to
your top-level domain (.net) or the master root keys
(.). In addition to that improvement, another benefit
of DANE is that server operators can replace (paid)
Root CA services with (cheaper/free) DNS records.
However, there is a long way until DANE can be used
in Java. Java’s own DNS code is very limited (no SRV
support, TLSA - what are you dreaming of?) The dns-
java93 library claims to provide partial DNSSEC veri-
fication, there is the unmaintained DNSSEC4j94 and
the GSoC work-in-progress dnssecjava95. All that re-
mains is for somebody to step up and implement a
DANETrustManager96 based on one of these compon-
ents.

1.6 Conclusion

Internet security is hard. Let’s go bake some cook-
ies!

2 About the Author

Georg Lukas completed a Ph.D. degree in Computer
Science in 2012, focusing the research on wireless
communication and security. Currently, he is working
as an IT Security consultant at rt-solutions.de GmbH
in Cologne. He is developing smart-phone applica-
tions and working on mobile payment solutions.
You can contact the author at lukas@rt-solutions.de.

93 http://www.dnsjava.org/ r. 2014-03-11

94 https://github.com/adamfisk/DNSSEC4J r. 2014-03-11

95 https://github.com/jitsi/dnssecjava r. 2014-03-11

96 http://stackoverflow.com/questions/23683398/how-to-use-
dane-with-java r. 2014-03-11

http://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
http://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
mailto:lukas@rt-solutions.de
http://www.dnsjava.org/
https://github.com/adamfisk/DNSSEC4J
https://github.com/jitsi/dnssecjava
http://stackoverflow.com/questions/23683398/how-to-use-dane-with-java
http://stackoverflow.com/questions/23683398/how-to-use-dane-with-java

	1 Abstract
	1.1 Affected Applications
	1.1.1 XMPP Clients
	1.1.2 Not Vulnerable Applications

	1.2 Background: Security APIs in Java
	1.2.1 Java SE up to and including 1.6
	1.2.2 Apache HttpClient
	1.2.3 Android
	1.2.4 Java 1.7+
	1.2.5 API Confusion Conclusion

	1.3 Java SSL In the Literature
	1.3.1 Negative Examples
	1.3.2 Positive Examples

	1.4 Mitigation Possibilities
	1.4.1 Cloud-Connected App: Certificate Pinning
	1.4.2 User-configurable Servers (a.k.a. "Private Cloud"): TOFU/POP
	1.4.3 Browser

	1.5 Outlook
	1.5.1 DNS + TLS = DANE

	1.6 Conclusion

	2 About the Author

