
Magdeburger Journal zur Sicherheitsforschung

Gegründet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher

Erschienen im Magdeburger Institut für Sicherheitsforschung

This article appears in the special edition »In Depth Security – Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Extending a Legacy Platform

Providing a Minimalistic, Secure Single-Sign-On-Library

Bernhard Göschlberger and Sebastian Göttfert

Despite decades of security research and authentication standards there is still a vast amount of systems
with custom solutions and embedded user databases. Such systems are typically hard to securely integrate
with others. We analysed an existing system of an organisation with approximately 12.000 sensitive user
data records and uncovered severe vulnerabilities in their approach. We developed a minimal, secure
Single-Sign-On-Solution and demonstrated the feasibility of implementing both a minimal Identity Provider
and a minimal Service Provider with only a few lines of code. We provided a simple blueprint for an Identity
Provider and an easy to use Service Provider Library. Therefore this organisation is now able to integrate
arbitrary web based systems. Moreover, others can follow the proposed approach and tailor similar solutions
at low cost.
Keywords: Single-Sign-On, Identity Provider, Legacy Systems

Citation: Göschlberger, B. & Göttfert, S. (2016). Extending a Legacy Platform: Providing a Minimalistic, Secure
Single-Sign-On-Library. Magdeburger Journal zur Sicherheitsforschung, 11, 686–690. Retrieved April 10, 2016,
from http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
Version 2016/04/07 14:03

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html


Magdeburger Journal zur Sicherheitsforschung // Ausgabe 11, Jahrgang 6, Band 1 (2016) 687

1 Introduction

Nowadays the internet is still full of web applications
with custom authentication based on user databases.
To a high degree those systems are not actively main-
tained and further developed any more despite still
being actively used. In the context of this paper we
use the term legacy system to refer to those kinds of
web applications.
This paper illustrates a real world scenario, we en-
countered during our work for a non-profit organisa-
tion. This organisation is managing user data from
approximately 12.000 individuals and approached us
to extend their existing web platform, which was by
our terminology a legacy system. The user records
contained sensitive information such as name, age,
sex, occupation, address, telephone, email and edu-
cation.
As the core system was maintained by a company
with limited resources, it was only possible to ask for
minor modifications. It was not possible to either ac-
cess the user database directly or run the extension
within the same domain. The user credentials (user-
name, hashed password) are also stored in the user
record database. As user credentials and other data
are frequently updated by system users, a replication
of the data (even a periodic one) would not have been
sufficient. Also it was impossible to migrate the au-
thentication information to a standard authentication
server and modify the legacy system respectively.
The maintaining company had already developed a
solution for reusing the legacy system’s authentica-
tion mechanism upon the organisation’s request. We
investigated the provided solution which was based
on a web service method protected by an API key
and discovered several vulnerabilities. The service
provided a credential check which could have been
used to retrieve arbitrary user credentials using a
brute force attack given the API key. The fact that
the API key was never changed and used for multiple
services increased the risk of it being uncovered or
leaked. From a usability viewpoint the solution also
appeared to be inadequate as it required multiple lo-
gins.
We decided to implement the extension as a separate
web application and interconnect the systems using
WebSSO.
The remainder of the paper is structured as follows:
In section 2 we give an overview of the state of art
for SSO. Section 3 covers our individual approach
and our design decisions before we conclude in sec-
tion 4.

2 Background on SSO

Single-Sign-On serves the purpose to authenticate
(and sometimes authorise) users against multiple ser-
vices without having to login multiple times. A pop-
ular SSO solutions developed in the last century was

the Kerberos protocol. It makes use of three step ticket
granting approach and uses symmetric encryption for
message exchange (cf. Neuman and Ts’ O, 1994).

1. A user has to request a ticket granting ticket
(TGT) from an authentication server. The ticket
is symmetrically encrypted with a session key,
that is encrypted with the hashed password of
the user.

2. The client uses this TGT to request a client-to-
server-ticket from the ticket granting server for
the use of a specific service. The ticket is encryp-
ted using the secret key of the respective service.

3. The client uses the client-to-server-ticket to au-
thenticate the service request and the service
verifies the ticket by decrypting it with its secret
key.

Kerberos fitted the needs of fat clients quite well, but
wasn’t designed for the web. With rising popular-
ity of web applications the need for a different pro-
tocol focussing on WebSSO became apparent. In 2001
the first version of SAML (security assertion markup
language) was published by the Organization for the
Advancement of Structured Information Standards
(OASIS). As of today, SAML 2.0 represents the most
widely used standard for WebSSO.
SAML 2.0 has a rich and diverse feature set, which
cannot be covered in depth here. Instead a brief intro-
duction in SAML based WebSSO is given. For further
information the reader is invited to have a look at the
specification1.
The standard consists of a document standard for as-
sertions and protocol standards. Assertions are state-
ments about a subject and are represented as an XML
document. Protocol standards define how assertions
are exchanged between identity providers (IdP) and
service providers (SP). The SAML Bindings specifica-
tion2 defines the message exchange for different scen-
arios including WebSSO (see K. D. Lewis and J. E.
Lewis, 2009). The most common bindings for this par-
ticular use case are HTTP Redirect and HTTP POST
(cf. Armando, Carbone, Compagna, Cuellar and To-
barra, 2008). As the HTTP Redirect Binding relies
on passing information through GET parameters the
length is limited and might not be sufficient in all
cases. Therefore the HTTP POST Binding is more flex-
ible as it is not limited in size, however requires the
browser to have JavaScript enabled as the redirect is
triggered as follows:

1 window.onload = function () {
2 document.forms[0].submit();
3 }

Figure 1 illustrates a typical WebSSO authentication
flow with SAML 2.0. When the user attempts to re-
quest a protected resource at the SP, the SP creates an
authentication request (AR) containing a unique re-

1 https://docs.oasis-open.org/security/saml/v2.0/saml-core-
2.0-os.pdf r. 2016-03-25

2 https://docs.oasis-open.org/security/saml/v2.0/saml-
bindings-2.0-os.pdf r. 2016-03-25

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf


Magdeburger Journal zur Sicherheitsforschung // Ausgabe 11, Jahrgang 6, Band 1 (2016) 688

Figure 1: SAML WebSSO Flow

quest ID and redirects the user to the IdP. If the user
is not yet authenticated to the IdP, the IdP challenges
the user to provide valid credentials (omitted in il-
lustration). Once the user is authenticated to the IdP,
it builds an authentication assertion (AA) containing
the request ID and signs it with its private key. The
user is then redirected to the SP with the AA. The SP
can validate the authenticity of the AA and grants the
user access to the requested resource.
In the process of open standardisation SAML became
very versatile at the cost of increased complexity. Also
its XML based approach causes overhead. To over-
come these issues JSON Web Token (JWT)3 has been
proposed as a less verbose solution that is easier to
implement. It was designed with a modern service
oriented web in mind. The subsequent use of related
standards such as JSON Web Signature (JWS)4 and
JSON Web Encryption (JWE)5 contribute to security,
simplicity and versatility.
A JWT is an URL safe BASE64 encoded JSON Ob-
ject containing claims as key/value-pairs. To secure
the token it can be encrypted using JWE and/or in-
tegrity protected using JWS. JWE and JWS wrap the
token as payload and use separate segments to spe-
cify a header providing information about the chosen
encryption or signature mode and additional seg-
ments depending on the chosen mode. The segments
(header, payload, additional segments) are separated
by a single dot.
The structure of a nested JWT is dependent on the
chosen encryption and or signing modes. The follow-
ing example illustrates JWS wrapping a JWE contain-

3 https://tools.ietf.org/html/rfc7519 r. 2016-03-25

4 https://tools.ietf.org/html/rfc7515 r. 2016-03-25

5 https://tools.ietf.org/html/rfc7516 r. 2016-03-25

ing a JWT claim set:
1. header (encryption)
2. key
3. initialisation vector
4. ciphertext (encrypted payload)

a) header (signature)
b) payload (JWT claim set)
c) signature

JWT itself defines neither protocols nor bindings.
It is possible to implement a WebSSO flow using
SAML Protocols and SAML Bindings and replacing
the SAML Assertions with JWTs. For a more extens-
ive overview on JWT see e.g. Jones, 2011.

3 Custom WebSSO Library

The circumstances pointed out in section 1 required
us to minimise the involvement of the company main-
taining the legacy system. We wanted to provide
them with a library that minimised their effort for im-
plementing the SSO IdP part. We were inclined to
reduce the actual IdP implementation to a few lines
of code and a minimal configuration overhead. Ex-
isting libraries, tools and solutions were not able to
fulfill our requirements and we decided to implement
our own lightweight library based on best practices
and existing solutions. In section 3.1 we describe our
chosen approach and the authentication flow before
we elaborate on our library implementation in sec-
tion 3.2.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516


Magdeburger Journal zur Sicherheitsforschung // Ausgabe 11, Jahrgang 6, Band 1 (2016) 689

3.1 Design of Authentication Flow

We decided to use the same flow as used by a SP ini-
tiated SAML 2.0 authentication request as it requires
the minimal amount of messages necessary for a se-
cure SSO mechanism. In fact, the IdP only needs to
handle one single request appropriately. This aligns
well with our intention to reduce complexity for the
IdP.
We further decided to use HTTP POST Bindings in
both directions to avoid the aforementioned poten-
tial limitations of the Redirect Binding and keep the
implementation overhead low. SOAP based bind-
ings (including HTTP Artifact Binding) would have
caused substantially more implementation overhead
on both sides.
The usage of HTTP POST Binding allowed us to map
our necessary parameters to different form fields:

1. SP - IdP (Authentication Request)
a) nonce
b) return_url

2. IdP - SP (Authentication Assertion)
a) user
b) signature

The form field nonce corresponds to the Request ID
in SAML. It is a randomly generated one time secret
used to encrypt the message payloads symmetrically.
It is encrypted using the public key of the IdP.
The SP also provides a return_url to the IdP specify-
ing where it has to redirect the user after a successful
authentication. This approach entails the opportunity
of adding arbitrary SPs without modifying the IdP. If
however, the IdP wishes to restrict this authentication
flow to certain SPs it may implement respective rules
based on the URL. The return_url is also encrypted
with the public key of the IdP. Asymmetric encryp-
tion was chosen over symmetric encryption (using the
nonce). The rationale behind this decision is, that we
wanted a nonce to only be used for encrypting one
single message – the Authentication Assertion.
Once the IdP has challenged the user for his creden-
tials it issues an Authentication Assertion. Such a
challenge is met through a valid session (e.g. browser
cookie). If users have no valid session yet the IdP asks
them to log in. The nonce received from the Authen-
tication Request is decrypted with the IdPs private
key and used for the symmetric encryption of the
fields.
The Authentication Assertion has a form field user
containing the symmetrically encrypted payload.
This payload can be arbitrary and should comprise all
necessary data the SP has permission to request. The
payload may vary depending on the return_url and is
not bound to any data format. This lowers the bar for
potential future SP developers.
The unencrypted payload is signed using the IdPs
private key. The resulting signature is included in the
form field signature.

3.2 Library Implementation

The library comprises two parts - a service provider
minilib and an identity provider minilib. Both parts
of the PHP sample implementation contain about 200
source lines of code altogether. The whole library
provides solely three methods - one per incoming re-
quest.

The IdP minilib provides the following method:

1 prepare_redirect(idp_private_key, user,
2 c_nonce, c_return_url)

The method takes the private key of the IdP, the
payload (user) and the encrypted input coming from
an Authentication Request (c_nonce and c_return_url).
The library decrypts the nonce and return_url with
idp_private_key, builds a signature from the user data
with idp_private_key and encrypts user with the de-
crypted nonce.
The library user retrieves all components to issue an
Authentication Assertion and redirect the user.

The SP minilib provides the following methods:

1 prepare_redirect(idp_pub_key, return_url)
2 check_authentication(idp_pub_key, nonce,
3 c_user, signature)

The prepare_redirect method provides the necessary in-
formation to initiate the authentication flow. It takes
the public key of the IdP and the desired return_url.
The method generates a secure random nonce and en-
crypts both – nonce and return_url – with the public
key of the IdP. The SP then only needs to render this
data as hidden form fields, to initiate the form sub-
mission, and to store the nonce in the session data.
The check_authentication method validates a received
Authentication Assertion. It decrypts the c_user pay-
load with the request nonce and verifies the result
using signature and idp_public_key. If successful, the
method returns the decrypted user payload. Through
the thorough use of cryptography, the SP can rely on
confidentiality, integrity, and authenticity of the result
of this method.

4 Conclusion

We consider the particular problem we were facing
as a quite common one and feel that it is oftentimes
addressed poorly. Our project demonstrates that it is
possible to tailor a solution based on the core prin-
ciples and ideas of proven standards. We consider the
SAML WebSSO Authentication flow and especially
the SAML POST Binding as the easiest secure way to
implement SSO. As far as assertion (or claim) repres-
entation is concerned, JWTs compact format is very
promising and should be considered in more projects.
However, our project required a more flexible, tailor-
made solution. The experience we gained during the
project showed that a simple, secure WebSSO solution



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 11, Jahrgang 6, Band 1 (2016) 690

can be built hassle-free. We provide the PHP library
resulting from our project as open source6. It can be
used as is or serve as a blueprint for other custom
WebSSO-projects where the use of standards is out of
scope.

5 About the Authors

Bernhard Göschlberger, MLBT MSc BSc is researcher
and software developer at the Research Studios Aus-
tria FG (RSA FG). His research focus is on techno-
logy enhanced learning with a special interest in mi-
crolearning, social learning, learning analytics and
data protection.
Sebastian Göttfert, BSc is student at Johannes Kepler
University Linz and was RSA FG project team mem-
ber for the presented work. He is currently writing
his master’s thesis on software best practices for Big
Data.

References

Armando, A., Carbone, R., Compagna, L., Cuellar,
J. & Tobarra, L. (2008). Formal analysis of
SAML 2.0 web browser single sign-on: break-
ing the SAML-based single sign-on for google
apps. In Proceedings of the 6th ACM workshop on
Formal methods in security engineering (Pages 1–
10). ACM.

Göschlberger, B. & Göttfert, S. (2016). Extend-
ing a Legacy Platform: Providing a Minimal-
istic, Secure Single-Sign-On-Library. Magdebur-
ger Journal zur Sicherheitsforschung, 11, 686–
690. Retrieved April 10, 2016, from http : / /
www . sicherheitsforschung - magdeburg . de /
publikationen/journal.html

Jones, M. B. (2011). The emerging JSON-based iden-
tity protocol suite. In W3C workshop on identity
in the browser (Pages 1–3).

Lewis, K. D. & Lewis, J. E. (2009). Web Single Sign-
On Authentication using SAML. International
Journal of Computer Science Issues, 41.

Neuman, B. C. & Ts’ O, T. (1994). Kerberos: An
authentication service for computer networks.
Communications Magazine, IEEE, 32(9), 33–38.

6 https://github.com/bgoeschi/minSSO/ r. 2016-03-25

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
https://github.com/bgoeschi/minSSO/

	1 Introduction
	2 Background on SSO
	3 Custom WebSSO Library
	3.1 Design of Authentication Flow
	3.2 Library Implementation

	4 Conclusion
	5 About the Authors

