Magdeburger Journal zur Sicherheitsforschung

Gegriindet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher
Erschienen im Magdeburger Institut fiir Sicherheitsforschung
http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

This article appears in the special edition »In Depth Security — Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

I Wrote my Own Ransomware; did not make 1 iota of a Bitcoin

Thomas Fischer

2016 saw a substantial rise in ransomware attacks and in some cases the return of some favourites with
Cryptowall, CTB-LOCKER and TeslaCrypt being some of the most popular. The volume of attacks was in
fact pretty steady for a good part of the year, with regular campaigns coming out on a weekly basis. It was
interesting to see the variety in mechanisms used for the ransomware which not only included self-contained
binaries but went all the way to the use of scripts. As part of the research I conducted last year, I wanted
to understand why there’s such a drive and lure for ransomware, outside of the victims payment, as well as
have some way of properly testing »anti-ransomware« solutions with an unknown variant. So to do that, I
went ahead and built my own ransomware and drew some conclusions on why it became so popular. This
talk explore the background and process used to build a live ransomware that I was able to use for controlled
testing. To finally draw some of my own personal conclusions.

Keywords: Malware, Malware Analysis, Bitcoin, Encryption

Citation: Fischer, T. (2018). I wrote my own ransomware; did not make 1 iota of a bitcoin. Magdeburger Journal
zur Sicherheitsforschung, 16, 879-892. Retrieved November 3, 2018, from http:/ / www.sicherheitsforschung-
magdeburg.de/uploads/journal/MJS_059_Fischer_Ransomware.pdf

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_059_Fischer_Ransomware.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_059_Fischer_Ransomware.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

880

1 Introduction

2016 saw a substantial rise in ransomware attacks
and in some cases the return of some favourites
with Cryptowall, CTB-LOCKER and TeslaCrypt be-
ing some of the most popular. The volume of at-
tacks was in fact pretty steady for a good part of the
year, with regular campaigns coming out on a weekly
basis.

Some of the campaigns were interesting and demon-
strated a variety of mechanisms used for the ransom-
ware which not only included self-contained binaries
but went all the way to the use of scripts.

As part of the research I conducted in 2016 to 2017,
I wanted to understand why such a drive and lure
by malicious parties to release ransomware outside of
the victims will pay. An ulterior motive was to have
some way of properly testing "anti-ransomware" solu-
tions with an unknown variant. So, to do that, I went
ahead and built my own ransomware and drew some
conclusions on why it became so popular.

It is important to note that at no point in time was this
malware used or released in the wild.

2 Background or Why Create a
Ransomware

2.1 FFS Why!!!

The year 2016 may well be known as the year of the
ransomware in the Information Security industry. All
eyes and marketing were fixated on what new variant
and which product might be best. There was not one
week without an article in the media or a vendor blog
post mentioning some new variant, or some new end
user organisation being affected by the latest ransom-
ware.

Working for an endpoint technology vendor at the
time and as a threat researcher, you constantly get
hounded by the marketing and sales teams to provide
the best way or means to demonstrate the tools cap-
abilities. Why? Honestly, because at the end of the
day that’s what the IT manager, CxO wants to see,
at least that’s the reasoning. Access to a malware
lab or videos while useful doesn’t necessarily provide
the whiz-bang feeling of seeing something happening
right in front of you.

There was another motive as well. A need to under-
stand the foundations of why so many variants were
appearing at such a rapid frequency. One way to un-
derstand this is to carry out practical steps and put
oneself in the same mindset as the malicious party
running the campaign.

The goal was set, break down a ransomware and
build my own variant to understand the effort and
mechanisms but also to provide a demo solution.

2.2 2016 Ransomware Year in Review

There are many means to deliver ransomware, includ-
ing drive-by on a malicious website, fake advertise-
ment leading to a willing or unwilling download, but
by far the most frequent that appears in reports is via
email phishing campaigns.

Various vendors regularly publish the state of af-
fairs on attacks and malware. As one example
used to understand the level of ransomware, one
might refer to the Proofpoint 2016 Q3 Threat Report

(https:/ /www.proofpoint.com/us/threat-insight/threat-

reports).

Proofpoint highlighted that an increase of 752% oc-
curred from 2015 to 2016 in the number of ransom-
ware variants. The following graph shows that in-
crease over time: (source: Proofpoint)

An interesting fact that they highlight is that the main
entry vector remained email and phishing campaigns.
However, the report showed that the main attack
types were based on file attachments and not URL
clicks. The primary files being either Office docu-
ments or JavaScript files.

Proofpoint’s 2016 year to date graph above shows that
in fact over 2016 the biggest vector was JS based at-
tachments. This being a side effect of better controls
in organisations that filter malicious URLs and en-
hanced security and patches on the Office products
and files.

2.3 Wait Need More Stats and Affirmation

One of the things that I noticed from my own email
honeypot was a recurring theme on how ransomware
campaigns were occurring. I surmised that in fact a
weekly trend was occurring from volumes, frequency
and delivery time frames. Not set-up to do in-depth
frequency analysis, I turned to friend and SANS ISC
Handle Xavier Mertens (@xme) who also tracks email
campaigns. With his help, it was possible to confirm
my theory.

A pattern was definitely visible. Weekly campaigns
were being launched with varying volumes with typ-
ically the start of the month being the most active. The
following graph for 2016 shows this pattern of cam-
paigns.

Zooming into one month to better understand this
pattern, a very interesting aspect appears. The bulk
of these email campaigns are distributed at the start
of the week. The campaigns looked to be coordinated
and timed in such a way that was reminiscent to IT
service delivery or even DevOps: Deploy at the be-
ginning of the week, analyse results and improve then
repeat.

Frequently the variant of ransomware stayed similar
during the campaign, the changes occurring from one
week to another in large part focused on improving
the messaging and delivery mechanism.

With Xavier Mertens” help digging a bit deeper, he
and I looked at the attachment types to note that a

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

881

Dec 29, 2016 | Kyle Torpey | © 7565 | " 2_
2016 Big Year for Ransomware — 70% Pays ir

This $1 Billion Industry

up o
FR I P 45 the -
IS’
to this point, there have been two main reasons people decide to use bitcoin-

s for censorship-resistant payments or as a . However, in 2016,
—~3oplication for the use of Bitcoin as a censorship-resistant payment system,

carity mw'

i
eV

\ e OF RIS TBUSINESSE g == arowen.
s The N =
Rise
ane Pr—— :
~ No Boubt Apgy 2016 The v, “‘7_7
R-I-hdcﬂﬂhm No Dz:ubht\tnout6 o WW7

Topic : U, It: 2016 the y,
isys Compys ®ar of R
services fter ans
o s company fomeg j o Sue Marg OMware
Ue! Pore,
Blog : ooy @ e 021 DATA SECURITY
N News/Bag ! PosTEp 5 NOv, 201

Ew""s"ﬂ"wwmgc,.,m [~ =

M spu'.a n u m
NS0muare> Sl r—

AMacks, In

e sy
tat rangompn, 0 | FePorted h

warg oW accuratg
B0 15t Quarter g 0" PPeared to py

t i
w ings. Now

112015 g 4 g » S O, W e 3 o o 1 Yeur

ompany breacy T of the Breach . ; 290 ranscrmyarg o oo 1er idea of how,
Propor %207 Personaily e 016 beco, neW Study frop,

ons during 50;¢ ally identifigppe,; e the year of th Ralf of Amarg 211008 (0 ey
» Will thay threat pe Information s 'fa’lmmwm, wi COMpaniss were g mm“"“ Ransomware:
CYETtaken by threge, rp Pening in EPJd;mil: 2" Cyborcrimg 1" PG Faca o

Tom the Tece,
Nt proj

:Ferm-m

Figure 1: Ransomware in the news

Growth in Ransomware Variants Since December 2015

/

12/28/2015 1/27/2016 2/26/2016 3/27/2016 4/26/2016 5/26/2016 6/25/2016 7/25/2016 8/24/2016 9/23/2016

Cumulative new ransomware

—/r

Figure 2: Proofpoint Q3 Threat Report Growth of Ransomware

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018) 882

Indexed Weekly Malicious Volume by Attack Type, 2016 YTD

mmm Malicious Document Attachment / \

——| mmmm Malicious URL

~——| mmmm Malicious JS Attachment ,\ / \/\
[LN\
[\ A
AV A~ A \
/ \ / \ / W AN
M A\

/\/ALA/\Z/Q \\J [V AN

January February March April June July August September

Figure 1: Year-to-date weekly malicious message volume by attack type

Figure 3: Proofpoint Q3 Threat Report Attack Type Activity

18,000
16,000
14,000

12,000

January March May July September November
2016

_time

Figure 4: 2016 Phishing Campaigns Frequency (thanks to Xavier Mertens)

13,500
3,000
2,500

2,000

count(_raw)

1,500

1,000

500

Sun Oct 1 Sun Oct 8 Sun Oct 15 Sun Oct 22 Sun Oct 29
2017

Figure 5: One Month Zoom of 2016 Phishing Campaigns Frequency (thanks to Xavier Mertens)

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

883

large majority, close to 75%, of the attachments are be-
ing sent out as compressed/zip files.

This is actually understandable considering efforts or-
ganisations and Microsoft have deployed to stop of-
fice file type attacks from being successful. However,
the downside being that these campaigns effective-
ness was relying on end users opening the archive
and opening the file inside.

Perhaps an area of improvement to be had in security
awareness programmes.

3 The Various Faces of
Ransomware

A ransomware variant is defined based on the dif-
ference in the type of encryption used, the delivery
method used, the attack type, the actor or any com-
bination of them. F-Secure has a map of all the differ-
ent variants that were released over the years. Zoom-
ing in on 2016 shows just how many campaigns were
being carried out and the number of variants being
used.

For our purposes and to be able to understand how
a ransomware is built, the methods of encryption be-
come more critical and these can be summed up into
4 simple types. In some cases, the campaign has been
seen to evolve from one of the simpler methods using
a script to a full-blown binary ransomware.

It becomes important as it does determine the level of
complexity and work required which is fundamental
to the analysis.

3.0.1 Script Based with Simple Encryption or
Hashing

Interestingly, a number of the campaigns used simple
tools and a script to encrypt the victim’s data. The
variant would either use built in tools like PowerShell
on Microsoft Windows or go as far as downloading a
script engine like python or php.

There are some advantages to using this method in
that it is quick and easy to get something up and run-
ning. More importantly, it uses »clean« as in non-
malicious, according to anti-virus products, binar-
ies so it bypasses most malicious software detection
tools. The disadvantage is that in most cases the key
to decrypt and the method are plainly available either
in the script itself or if you capture the command line.
This makes it easier for security teams to unlock any
encrypted files.

A simple example of this is a variant of Nemucod
which used a batch file and 7zip to create encrypted
archives. Similar to Nemucod, you can include vari-
ants like HolyCrypt and CryPy as well as Stampado
written in Autolt (an automation language).

3.0.2 Simple Hashing Binaries

While a script may be used to download the dropper,
the next step up for a ransomware variant is to code a
binary application. The encryption method typically
is based on a hashing algorithm such as Base64, RC4
or SHA1 and blowfish. This does require the use of
some developer tools such as visual studio and some
programming or API knowledge of the target plat-
form operating system.

The prime advantage of a ransomware of this type
is the readily available hashing algorithm code and a
compact simple binary that can be deployed directly
via the dropper script or thru a trojan.

Like the script-based ransomware, these are easy for
security teams to reverse. Hashes are easily recognis-
able and without a proper complex salting method
typically easy to reverse. It is also common, unless
using a library or taping into the API, to badly code
the hashing method in which case it may well be even
easier to reverse.

3.0.3 Secret Key Based Ransomware Binaries

The next step up in ransomware variants and most
common implementations is to code a binary applic-
ation based on a proper encryption method such as
AES, GOST, DES/Triple-DES, ROT13 or XOR.

This does raise the complexity of the variant as you do
need to manage a secret key and ensure that your en-
cryption is not flawed or easily reversible. There are a
lot of code sample algorithms out there and it is quite
easy to find open source implementations. These vari-
ants become harder to reverse and thus more likely to
ensure encrypted files stay encrypted.

The downside is the secret key management. There
are two options when dealing with this type of
ransomware. Either the secret key is hardcoded into
the code or a key management system is required in
the command-n-control backend and a unique key is
generated for each victim. Using a hardcode secret
key is easier to implement and manage but will be the
same for every victim. Thus, if one victim retrieves
that key all other victims can use it. A unique key per
victim increases the complexity of the code. Either
the key is generated by the code and gets uploaded
or registered into a system managed by the campaign
author; or the key is generated by a backend system
when the ransomware variant connects to fetch it for
the encryption process. In both cases, the key needs to
be managed in some kind of key management system
operated by the malicious party. If it is not, there is no
way for the victim to get the unlock code.

This is one of the reasons the ransomware messages
may contain an ID or code that must be sent to the
malicious party. They use this to identify what unlock
key is needed.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

884

other (220)

zip

msword

octet-stream

rfc822-headers

vnd.ms-excel

vnd.ms-word.document.macroenabled.12

x-compressed

X-zip

x-zip-compressed

Figure 6: Types of Attachments from 2016 Phishing emails (thanks to Xavier Mertens)

3.0.4 Public Key Based

While very similar in terms of implementation ad-
vantages and disadvantages, the most complicated to
implement as a ransomware is a public key based
version. Most common is naturally an RSA based
encryption used in ransomware. Like the latter two
types, this does require good programming skills, de-
veloper tools and a good knowledge of the target plat-
form.

The complexity to implement is much higher as the
malicious party needs to have a back end key man-
agement system to store and generate the private key
as well as the public version. The code also needs to
be able to fetch the public key to be able to encrypt the
target files.

3.1 But They All Behave Using the Same
Principal

Whatever version is used, a ransomware has a pretty
constant workflow and demonstrate the same phases,
as shown in Fig. 9.

Delivery is the first step, which is either achieved dir-
ectly or through a dropper. This initial stage’s goal
is to deploy the ransomware pure and simple; down-
loading the binaries and installing them on the local
media. In some cases, it may also introduce other ma-
licious software such as a remote access tool.

The second step is for the ransomware to execute.
This is the launch of the ransomware either done dir-
ectly from with-in or from a script initiated by the de-
livery mechanism. This initial execution phase may
also set-up the environment before the encryption oc-

curs: creating or fetching the encryption key, pre-
paring persistence and dropping other non-encrypted
artefacts.

The Encrypt step is the third and most important one.
This is where the ransomware identifies and carries
out the encryption of the host it has been deployed
on. Typically, and in order to optimise speed of en-
cryption, the ransomware will look for specific »user
data files« across all media and drives, optionally will
also look for any mounted shares. In some cases,
the ransomware will focus the encryption on the file
header and the first few KBs in order to avoid being
bogged down in the encryption of very large files.

The fourth step is an optional step and not seen in
every variant. The ransomware may look at spread-
ing by deploying droppers on other hosts in the net-
work either thru exploits or through open shares and
removable devices.

Finally, the ransomware will display its ransom note
and deploy its persistence techniques including the
Run registry key and setting file type registry keys to
open the note.

Why is knowing about this workflow important?
Identifying them is key to understanding what needs
to be developed to build or simulate a ransomware.
The important steps to simulate a ransomware be-
ing execute, encrypt and ransom note, as these are
the minimal activities needed to demonstrate a host’s
data being encrypted for ransom. Optionally imple-
menting a delivery phase provides a more complete
demonstration or testing platform.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018) 885

f)zou

p
"
e
t":?ngai‘
ok
e
T
T
T
EREL P
BN
s
R
&
o
o7y
o)
>
ES Marc
Apr
= e’ . %‘o
E O
o, N S Q-g‘?' &2
o e, ot Pk
iy R o Now N o b ok
(@dq'r) \f“%f-", 1 \Q;D - \.f’,"q (32%;‘3%
ot N, N N N Lo
‘i“/& Q’?}’"”z % Naaa, '{%{;3@ Qg;fg‘?% %%:%
S, INZAED, INGpAE NG N G
RO 5.;%,:?,,13, (.E’z H o ke Tt
on, NGRS NOA I\ N L% b
e Wofmda 7 N N N .@%&*
£ olg LR i %\ by i b
?%j% N 2 \15’?{% fe. TP:(?O £ o(%rc; N Q‘ﬁ:i; “’rq;‘a
S e, INJ a8 NEs NgoY ot
S, .é.& * I\ 4;,\{3- s o o M 4;%@0, s
el e = I, Z Y, ke A ¥ - S T
/wq‘ Q 6;%7" 1'4:/ Y z?oj"gq%-f 4’3&0 ,fig?«x%
%‘% \‘%\}fi:/’, v %‘f@. ey G‘g}q);{,;t\f}%}%
o NG5, A, b, St D S0
£ Aelely © b m‘ﬂz{‘; % e, f o, e
” i oa, W SN E -
O’"o,@t‘ :ﬂpg. 5 e (2 2 a;,;;q;'x,
% o, N
. L 'd%n Gy B

oWSShell = new ActiveXObject ("
oW55hell. Bopup ("Allocated r
sWindows = oW35hell,ExpandEnvi
sFowerShell = sWindows + "\
oFile = pew ActiveXObject("Scripti
if (oFile.FileExists(sPowerShell))
1

call C:\Users\PC\AppData‘\Local\Temp\a@.exe a -sdel -mx@ -mhe -p[ky] "%¥i.crypted" "#¥i"

Figure 8: Example Script Based Ransomware

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

886

Figure 9: Workflow of a Ransomware

4 Where to Begin

Ultimately if you think about it, this is a software de-
velopment project. Treating it as one helps give struc-
ture and ensures that key aspects are not missing and
allows planning of how the simulation is going to be
programmed and work.

4.1 Project Management vs. »Project«
Management

Having been a developer and spent a fair amount
of time working with project management as well
product management, my initial thought was to think
of this as a project but that lead my mind down
the project planning rabbit hole. Trying to keep this
simple, it made no sense to go down that hole.

Instead, a simpler method was to build a mind map of
what I needed to address to develop this simulation of
a ransomware. The full mind map is displayed in the
following picture

Staying as close as possible to the typical workflow
steps of a ransomware, the initial nodes in the mind
map are delivery, encryptor (to represent the encryp-
tion phase), run (for the execution phase) and dropper
(the delivery phase). I also added a decryption node
as it would be needed to restore the encrypted files,
c.f. later on about lessons learnt.

4.2 Getting the Right Encryption Method

The bulk of work really is the encryptor node of the
mind map. This is the more complex part of the
work to be carried out. Breaking it down you need
an encryption method, a programming platform and
finally the steps to parse for files and apply the en-
cryption method.

Deciding on what programming language, it was ne-
cessary to take into account that this needs to be
simple and quick. My initial thought was to shy
away from more complex development using C++ or
C# and to focus my attention on scripting languages.

Here you have a choice as it is easy to get either
PowerShell, python or php running on the target ma-
chine. There is some limitation when using a script-
ing subsystem as depending on the version certain
features might be available or not, making it harder
to build the encryption or access local system files.
PowerShell itself posed another problem depending
on the version of Microsoft Windows being used as it
was not necessarily enabled and, in some cases, posed
limited set of commands making it difficult to build
the encryption engine.

Ultimately, the decision was to go with php for its
simplicity, ease of deployment and some other factors
that are covered in the lessons learnt.

4.3 Yeah, but Which Encryption Algorithm

One important factor of the ransomware build is go-
ing to be the choice of the encryption method used.
There are so many to choose from and plenty of lib-
raries out there to help to get started.

4.3.1 Advanced Encryption Standard (AES)

The most common method used today is a symmet-
ric key based solution known as AES or Advanced
Encryption Standard. AES itself is public, readily
available and was originally proposed and accepted
as a replacement of DES. The algorithm named »Ri-
jandael« developed by the Belgian cryptographists
Daemen and Rijmen was adopted because of its se-
curity, speed and flexibility of implementation. That
flexibility has seen it adopted into Wi-Fi encryption
standards.

The algorithm works on the principal of taking data
blocks of 16 bytes then applying several substitutions,
permutations and linear transformation; commonly
known as blockcipher. The strength comes as these
operations are repeated several times, »rounds«. A
unique key is derived from the encryption key for
each round and applied to the calculation. AES block
structures can vary, which provides us with an added
level of complexity. This is where the terms Electronic

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

887

Word Attachment

JSinZp powershell
web driveby python FEED
s php c++
programming
- doc
decryption) badass for each txt
set key
file
encryptor xls
dropper i
run code parse disk zip
server h
payload script irg
method AES
obfuscation
encryptor
show message ryp T
set reg
XOR

Figure 10: Mind Map for Developing the Ransomware Simulation

Codebook (ECB) and Cipher Blocker Chaining (CBC)
appear alongside AES.

4.3.2 RSA Encryption

RSA is probably one of the most complex to imple-
ment and requires the use of libraries. The founda-
tion of RSA Encryption is the use of asymmetric keys
and is the brain child of cryptologists Rivest, Shamir
and Adleman. RSA works by using two different but
associated keys: public and private. Although asso-
ciated, it is not possible to calculate the private key
from its associated public key. The public key, as its
name implies, is made public and anyone can use it
to encrypt or verify messages. The private key should
be kept safe by its owner and is used to decrypt the
information or sign it.

The security principal of RSA derives from the math-
ematical problem of integer factorization. Essentially
when you encrypt the data, it is raised to the power
of the key then divided with the remainder of the
product of two primes. A simple explanation is
already complex in itself, so you can imagine that im-
plementing this is hard and error prone. Thus, not a
good choice for something simple.

4.3.3 The Simple Solution Emanates from the Days
of Caesar

While AES might seem like a good choice, it would
still be complex and time consuming to develop prop-
erly. In the history of encryption, one of the original
ciphers was known as the »Caesar Cipher«. It is a
simple substitution algorithm in which each letter is
replaced by another letter based on a shift key or a
map. So, for example, if you have the letter ‘E’ and

use a key of left shift by 3 the encrypted value is ‘B’.
The advantage of such a cipher is the simple program-
matic application as all you need is an array to map
the original value to the new. Over the years this
transformation has evolved and is now commonly re-
ferred to as a technique called ROT13; applying a shift
of 13 letters.

While tempting, ROT13 would not offer the best sim-
ulation of data encryption and something a little more
advanced, hard to brute force but still easy to pro-
gramme was needed. Introducing XOR (or Exclusive
OR). An XOR cipher operates according to the follow-
ing mathematical principal:

A0 = 0 A®A = 0 (A@B)eC =
(B®A)®A=DBa0 =B

The @ in the formula denotes an exclusive disjunc-
tion. In simpler terms, with a given key you ap-
ply a bitwise XOR operation to the data. To reverse
the encryption, the same key and bitwise XOR is re-
applied.

A® (BaC)

In pseudocode a simple version of this might look
something like this:

for i = 0 to length of theText

newstr[i] = theText[1] xor
key[i1i mod key_length]

Easy enough to code in any programming lan-
guage.

4.4 Prepare the Development and Testing
Environment (Tools)

Part of the requirements was to keep this simple and
not have any costly solutions involved in the build

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

888

process. It is quite easy to get carried away and be
bogged down in complex IDEs (integrated develop-
ment environments) so Visual Studio would not be a
first choice for getting started. In fact, to build a very
simple piece of code notepad would be sufficient.

Notepad++ provides an upscale simple text editor
with some useful programming additions like code
highlighting. It also provides a portable version, mak-
ing it easier to use in testing environments or across
multiple instances.

The programming language selected of php does re-
quire the availability of an interpreter or runtime.
Again, simplicity is important and the advantage of
using an interpreter like php is that older versions are
easily obtainable. Older versions are interesting be-
cause they typically have a smaller footprint and less
requirements.

Like any good programme, a ransomware still needs
to be tested and validated. Care needs to be taken
when testing the code. The risk when testing is that
the host where the code is run ends up encrypted and
if there is an error in the code or it is not possible to
reverse the encryption would stay encrypted. So a
throwaway instance becomes very useful as having
to rebuild a test machine can be quite time consum-
ing. Virtual machines with snapshot or image capab-
ilities is the way to go here. The testing environment
thus becomes a set of virtual machines with a baseline
snapshot, which can easily be restored after encryp-
tion to speed up the testing.

5 And thus is Born the
Ransomware

Encryption and programming language selected, the
next step is to start programming. Having had some
formal programming experience and because I like to
do things in a structured way, it was natural to lay-
out the main programme workflow using an activity
diagram.

5.1 Main Steps in the Programme Flow

The programme itself needs to start with an initialisa-
tion phase. This phase will start by setting or gener-
ating the secret key. The next step is to set a starting
path for the programme to find the files and encrypt
them. I choose to do this because it would signific-
antly control where the ransomware would act and
also provide the latitude to play around on which dir-
ectories the programme would act.

The next phase is the main programme loop. This
phase is the actual action of finding the files and
then encrypting them. The loop starts with a recurs-
ive search of all the files in the path. However, this
search is limited to certain file types. It is important
to limit the file types, because encrypting the wrong
files could stop applications from working, or worse,
impede the operating system and cause a blue screen

of death.

For each file identified, the first step is to encrypt the
file using the XOR code and once that is done the file
is renamed. Renaming the file afterwards avoids any
simple tools that might try to block the ransomware
based on the filename extension type.

If there are more files in the directory structure, the
process gets repeated. If all the files have been parsed,
the loop ends, and the application stops.

5.2 The Code

The full ransomware code is not important and if the
readers really wants to research this themselves, it is
better to have pointers than the answer. A few por-
tions of the code is highlighted in relation to the pre-
viously discussed workflow.

A first step is to establish the encryption key. The easi-
est would be to just set a string with the key. But
thinking like a malicious actor, I realised it would
need to be obfuscated or even encrypted itself. This
would avoid any prying eyes or sysadmins from im-
mediately figuring out the encryption password. So
the key is base64 encoded. Of course this is not a per-
fect protection but does provide a small level of ob-
fuscation. That’s all that is really needed.

Once a key is available and useable in the programme,
the main body of the code can begin. Any good pro-
grammer knows that to parse a tree, essentially a dir-
ectory structure is one, the best technique is recursion.
Thus the bulk of the search for files to be touched and
the encryption itself are placed in a function that will
recursively call itself for each directory and then pro-
cess the files in the directory.

The recursive function is first called using the start
directory which can either be the root of the drive,
e.g. ¢\, or an existing subdirectory on the drive, e.g.
c:\Users. To avoid any blue screens of death or sys-
tem failures, the programme needs to ignore certain
file types and avoid processing. Primarily, it needs to
avoid directories like \windows\, \system32\, \pro-
gram files\, etc.

Using the function preg_match, the current directory
in the recursion is matched to certain keywords pat-
terns. If the result is true that directory and subdirect-
ories are skipped. If not a match, the directory con-
tents is parsed. If the item in the directory is a dir-
ectory itself, the new path is passed into the recursive
function.

If the item is a file, i.e. the directory bit is not set, the
programme checks the file type. As a ransomware,
the goal is to encrypt files that are »user content« thus
DLL or other binary files are not of interest. The files
that are interesting are the ones that typically have as
file extensions, things like zip, tar, doc, docx, xls, xIsx,
jpg, png, etc.

So if the file matches the criteria, the encryption pro-
cess kicks in. The code starts by opening the file with
fopen function in the 'r+' mode to allow for reading

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

889

.—»I—;- Key

find file H encrypt file)—)[rename file
oC, x1sZip,...] [
— Set Path
[finsihe

Figure 11: Initialisation phase of activity diagram

.—>|7> Key

find file encrypt fle rename file
oc, x1sZig,...] i
I Set Path
[finsihe

Figure 12: Encryptiong loop of the activity diagram

and writing of the file from its start. The importance
of starting at the head of the file is due to the fact that
most file structure and type information is located in
the first few bytes. A good ransomware needs to en-
crypt this information so that the original file is no
longer useable.

The encryption itself can begin. The first step is to
open and read in the file. The code use fread to pull
in a buffer of 1024 or 2048 bytes. It is preferable and
better to only read the first few bytes of a file for mul-
tiple reasons, including reducing the need for the pro-
gramme to have a large memory usage and provid-
ing faster processing. If the programme reads only a
portion of the file, it will take less time to access but
also less time to run the encryption algorithm on the
data loaded in the buffer. Interestingly, a ransomware
doesn’t need to encrypt the whole file as long as the
file header and start of contents is corrupted enough,
so the original application or editor won’t be able to
make sense of it.

This is important as the faster the ransomware can
encrypt the contents of the victim’s hard drives, the
more effective it will be.

A buffer in languages like php can be programmat-
ically accessed as an array which is extremely use-
ful and makes processing the data easier. With the
file opened for write and the buffer loaded, the en-
cryption can begin using a for loop to process each
array element. The loop changes each array element
by XOR'ng its value with the ordinal of the key. The
element of the key to use is determined by the current
buffer index shifted to the length of the secret key.

Once manipulated the buffer needs to be written back
on top of the start of the file and closed. The fseek
function repositions the file pointer to the beginning
and the fwrite function dumps the buffer back into
the file.

The programme closes the file, effectively ensuring
the new encrypted file header is written to disk and
proceeds to rename the file. To rename the file, the
ransomware appends a new file extension such as
.crypted, .enc, etc. It leaves the original file extension
so that when the decryption occurs removing the new
extension makes the file accessible again.

That’s it, that’s all that is needed to build a basic

ransomware.

5.3 One More Thing, Delivery

The demo still needs a means to deliver the now com-
pleted ransomware code. The end goal is to have a
functional demo, so the ransomware should be de-
livered through a technique discussed previously. To
complement and really finish the demo, a simple zip
attachment with a JavaScript or even some obfus-
cated PowerShell in an office document attachment
will suffice. This script simply needs to download the
ransomware file(s) from a web server and start it. Ac-
tual development of this is left to the initiative of the
reader as it can take several forms.

The demo is complete. Just place the fake attachment
in an email on the demo platform and start clicking.

5.3.1 Alternate Delivery Methods

There are better methods to deliver this ransomware
payload. Most of these techniques require some form
of exploitation kit or RAT. These are presented as
toolkits that require some digging and introductions
in the Dark Web or to services that provide these kits.
Most of these tools work on the deployment and de-
livery via a dropper integrated into an office docu-
ment or archive attachment. Using them also needs
a backend, i.e. a small botnet.

While feasible this would add considerable effort and
complexity to the base demo build.

6 Lessons Learnt During the Build
Process

No good project would not end with a lessons learnt
phase. There were some to be had during the build of
the ransomware. Two stood out when reviewing and
drawing conclusions on the build of the process.

Firstly, choose the platform and tools wisely. It is easy
to get bogged down in the complexity of a tool, for
example, using an IDE like Visual Studio or Eclipse,
while interesting from the developer’s point of view,

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

890

er on the inside

$k=baseé4_decode('T
$s=chr(92);

Skir
if (preg_matcl
$dp=opendir

than it is on the outside.

12)/1',$p) || preg_match('/recycle/i',$p)) return;

Figure 14: Only search for non-system and important directories

does require a lot of resources. Creating a simple
script in these environments is not as simple as just
opening a new text file.

The scripting or interpreter that is used to run the
ransomware code is extremely important. Newer ver-
sions of many of these environments are not stan-
dalone and require not only the use of the executable
but also require libraries in the form of DLLs. Having
additional libraries makes the delivery more complex
as more files must be downloaded and deployed to
the target host. Going back to older versions helps
as these typically are very basic and do not need ad-
ditional support files. Alternatively, when the inter-
preter is opensource it is possible to recompile trading
off an easy build for something much more complex
and needing greater level of testing.

PowerShell comes built into the more modern ver-
sions of the Microsoft Operating system, which is
great as it simplifies things immensely. The downside
is that PowerShell is not installed by default on earlier
versions like Windows 7 and requires some form of
activation or in the case of non-Windows devices ac-
tual installation.

The second main lesson learnt is to snapshot fre-
quently or to ensure a restore image is readily avail-
able of your development environment. It is ex-
tremely easy to accidentally run the malware while
checking the code or building the delivery mechan-
ism. This leads to the encryption of the disk including
the ransomware itself and the decryption script, if it
exists.

Yes, it happened and of course the snapshot was out
of date! Unfortunately, the first iteration of the de-
cryption script failed, so a secondary development en-
vironment was needed as well as going back to the
drawing board to fix the script. Care is definitely
needed!

7 Getting Past the Prophylactics

Part of building this ransomware was to test the vari-
ous anti-malware solutions and next generation pro-
tection solutions. Using the php interpreter as the
main executable for the ransomware gave interesting
results. Only 5 or 6 anti-malware solutions would
flag this as malicious while most online services like

VirusTotal showing this as not suspicious. When it
was flagged as bad, the main reason was because of
the older version of the interpreter executable; updat-
ing it would once again flag it as not suspicious.

For next generation products, Cylance was specific-
ally tested late 2016. With the default settings, the
ransomware ran effectively. Getting the solution to
detect and stop the ransomware required setting an
additional option to detect and block scripting. So,
there is a benefit to using an interpreter to do the
ransomware in avoiding detection.

Effective detection only really comes from products
that support behaviour based detection and even then
that varied considerably. The biggest let down was
the timing of the detection and blocking. Some of
these products detect based on the file name change
but in many cases this is too late as the encryption oc-
curs beforehand.

8 Conclusions

A study from the security firm TrustLook Inc showed
that 38% of victims of ransomware paid it to get their
files recovered. A survey carried out by Intermedia
showed that 59% of office workers hit by ransomware
paid for it themselves without informing their em-
ployer. These statistics, although high-level, are in-
teresting as the demonstrate that victims are paying,
and it is possible to make money.

The development of the initial ransomware pro-
gramme was simple enough and by using a language
interpreter like php took less than 24 hours to develop
and with modern libraries and ransomware as a ser-
vice offering, the time needed could be far less. The
real challenge and complexity comes when an exploit
kit or more advanced techniques are introduced, lead-
ing to a longer integration cycle.

So, one day’s effort for a vanilla ransomware de-
livered via a simple phishing email. Knowing the
results of some of the studies previously mentioned
and with an average pay-out per victim of 500 to 1000
USD, it is clear that with a development cycle of less
than 24 hours the return on investment is alluring, yet
best left to malicious actors who don’t abide by the
law.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018)

891

elseif ($a='e'sspreg_match('/[.] (txt|zip|rar|r00|r01ir02ix03|7z|tarigzigziplarciar]ibz|bz2|bzalbzip|bzip2|ice |xls|xlsx|doc|dock

{
$fp=@fopen ($p.§s.50, 'r+');

Figure 15: Selecting files of a certain type only

// read a mimum of the file to overwrite, this will make it quick and dir

sx=Qfread($fp,1024);

// do the XOR operation using the string and ordinal position
for($i=0;si<strlen($x) ;$i++)sx[$i]=chr(ord($x[$1i])~ord(sk[$i%strlen(sk)]));

@fseek (5fp,0); @fwrite(3fp,sx): E@fclose(sfp):

Figure 16: Read a buffer of the file contents and encrypt

tspkg.h.crypted
Ch\Usersh,

Tulipsjpg.crypted
ChUsers\PublichPublic Pictures'\5ample Pictures

untitled 5.txt.crypted
Ch\Usersh” ADesktoptest

vistasidebar.txt.crypted
C\Usersh,

visualstudio2005.txt.crypted

ChUsers\” o o MAppDatat\Local\VirtualStore' Pro..,

vmwarefilters.txt.crypted
ChUsers\’

wdigest.cpp.crypted
ChUsersh,”

wdigest.cpp.crypted
ChUsersh_. ..

wdigest.h.crypted

ChlUsersho_. 7 "Desktop\Tools'2016\buhtrap_m...

wdigest.h.crypted

ChUsers'__ .. __ADesktop\Toolsh2016\buhtrap_m...

Wildlife.wmv.crypted
Cih\Users\PublichPublic Videos\Sample Videos

win/gadgets.tat.crypted
ChUsersh.

Your StockOption Grant.doc.crypted
ChlUsershow s oo ADesktophtest

Your StockOption Grant.zip.crypted
ChlUsers' __.. “\Desktop'test

_init__.py.crypted
CihUsersh,”

_init__py.crypted
Ch\Users', ™

Figure 17: Careful it is easy to end up encrypting the development environment

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

Y Desktoph Tools\2016\buhtrap_m...

MAppDatatLocal\VirtualStore'Pro...

MdppDatat\Local\VirtualStorehPro..,

ADesktoph Tools'2016\buhtrap_m...

BDesktop\Tools"2016\buhtrap_m...

‘AppData\Local\VirtualStorePro...

- —--\Desktoph\Tools\2016" priv_eschex...

"Desktoph Toolsh 2016\ priv_escex...

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Type:

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

CRYPTED File

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 16, Jahrgang 8, Band 2 (2018) 892

About the Author

With over 25+ years experience, Thomas has a unique
view on security in the enterprise with experience in
multi domains from risk management, secure devel-
opment to incident response and forensics. In his
career, he’s held varying roles from incident respon-
der to security architect for fortune 500 companies
as well as industry vendors and consulting organ-
izations. Currently he plays a lead role in advising
customers while investigating malicious activity and
analyzing threats for Digital Guardian. He’s also a
strong advocate of knowledge sharing and mentor-
ing through being an active participant in the infosec
community, not only as a member but also as director
of Security BSides London and as an ISSA UK chapter
board member.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

	1 Introduction
	2 Background or Why Create a Ransomware
	2.1 FFS Why!!!
	2.2 2016 Ransomware Year in Review
	2.3 Wait Need More Stats and Affirmation

	3 The Various Faces of Ransomware
	3.0.1 Script Based with Simple Encryption or Hashing
	3.0.2 Simple Hashing Binaries
	3.0.3 Secret Key Based Ransomware Binaries
	3.0.4 Public Key Based

	3.1 But They All Behave Using the Same Principal

	4 Where to Begin
	4.1 Project Management vs. »Project« Management
	4.2 Getting the Right Encryption Method
	4.3 Yeah, but Which Encryption Algorithm
	4.3.1 Advanced Encryption Standard (AES)
	4.3.2 RSA Encryption
	4.3.3 The Simple Solution Emanates from the Days of Caesar

	4.4 Prepare the Development and Testing Environment (Tools)

	5 And thus is Born the Ransomware
	5.1 Main Steps in the Programme Flow
	5.2 The Code
	5.3 One More Thing, Delivery
	5.3.1 Alternate Delivery Methods

	6 Lessons Learnt During the Build Process
	7 Getting Past the Prophylactics
	8 Conclusions

