Magdeburger Journal zur Sicherheitsforschung

Gegriindet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher
Erschienen im Magdeburger Institut fiir Sicherheitsforschung
http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

This article appears in the special edition »In Depth Security — Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Web Application Firewall Bypassing

An Approach for Penetration Testers

Khalil Bijjou

Security experts perform security assessments of web applications in order to identify vulnerabilities that
could be exploited by malicious users. Web Application Firewalls add a second layer of protection to web
applications in order to mitigate these vulnerabilities.

The attempt to bypass Web Application Firewalls is an important aspect of a security assessment and is neces-
sary to ensure accurate results. This thesis describes bypass techniques and offers a systematic approach for
security experts on how to bypass Web Application Firewalls based on these techniques.

In order to facilitate this approach a tool has been developed. The outcomes of this tool have significantly
contributed to finding multiple bypasses. These bypasses will be reported to the particular Web Application
Firewall vendors and will presumably improve the security level of these Web Application Firewalls.

Keywords: web application firewalls, penetration testing, bypass techniques, ethical hacking, red team

Citation: Bijjou, K. (2019). Web application firewall bypassing: An approach for penetration testers.
Magdeburger Journal zur Sicherheitsforschung, 17, 900-926. Retrieved April 5, 2019, from http: / / www.
sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

901

1 Introduction

This Bachelor Thesis focuses on the bypassing of Web
Application Firewalls. The following chapter de-
scribes the motivation and background for this Bach-
elor Thesis. Furthermore, it provides an outline of the
contents of this work.

2 Motivation and Background

According to »The Global State of Information Secur-
ity Survey 2015« PwC, 2014 global security incidents
increased by about 48% between 2013 - 2014. Com-
panies become aware of risks due to missing security
measures and the market for cybersecurity services is
growing steadily. Gartner, a research firm, states that
global security spending increased by 7.9% in 2014, as
reported by The Wall Street Journal The Wall Street
Journal, 2014.

Organizations use Network Firewalls and Intrusion
Prevention Systems to lower the probability of a se-
curity breach. As these technologies mostly oper-
ate on the transport and network layer, they do not
provide sufficient security measures for web applic-
ations. Moreover they generate a multitude of false
positives. This has led to the introduction of Web
Application Firewalls (WAFs). WAFs operate on the
Application Layer Level and therefore understand the
context of web traffic. In addition to that WAF setups
contain several features like load balancing or SSL de-
cryption. The popularity of WAFs is increasing. Gart-
ner reports that the WAF market in 2014 has grown
by 24% compared to 2013 D’'Hoinne, Hils and Young,
2015.

One way to improve the general security level of an
organization is by vulnerability management. Vulner-
ability management is the »cyclical practice of identi-
fying, classifying, remediating, and mitigating vul-
nerabilities« Foreman, 2010. Companies perform vul-
nerability management by engaging security experts
to perform penetration tests. The main objective of
a penetration test is the determination of vulnerabil-
ities within a computer system, network or web ap-
plication to detect weaknesses that an attacker could
exploit Margaret Rouse, 2011. From the perspective
of a penetration tester, the increasing number of WAF
Deployments makes vulnerability assessments more
difficult and may alter the test outcome. Therefore at-
tempting to bypass the WAF is an important aspect of
an assessment in order to ensure accurate results.

3 Scope

This thesis is aimed to fulfill four main objectives:

The first objective is to impart knowledge about
WAFs in general and especially its security mechan-
isms, which is needed to understand bypassing tech-
niques.

Then the gathering of known bypassing techniques
and methods in order to develop an approach for pen-
etration testers.

Thirdly, the establishment of a practicable approach
for penetration testers that can be used in security as-
sessments.

Finally, the development of a tool which facilitates the
execution of the approach.

4 QOutline

The introduction chapter outlines the motivation of
this thesis. The scope and structure of this thesis is
described.

In the second chapter, important theoretical subjects
are introduced to give an overall understanding of
the thesis’s topic. The comprehension of these prin-
ciples are prerequisites to understand the subsequent
chapters.

Thirdly, techniques and methods for bypassing WAFs
are gathered, explained and categorized. The content
of this chapter serves as a foundation for the approach
of the next chapter.

In the fourth chapter, a practical and systematical
approach to bypass WAFs for penetration testers is
given.

The fifth chapter introduces the tool that was de-
veloped during this thesis. It explains how this tool
simplifies steps from the approach of chapter four and
what advantages it offers.

In the sixth chapter, results that were acquired from
using the tool in a test environment are presented.

Finally, chapter seven draws a conclusion of this
thesis.

5 Theoretical framework

This chapter covers the explanation of necessary ba-
sics, that are required in order to understand the con-
tents of this thesis. The following sections introduces
common vulnerabilities in web applications and Web
Application Firewalls (WAFs).

6 Vulnerabilities in Web
Applications

Positive Technologies states, that in 2013 the secur-
ity level of web applications has become inferior to
2012 Technologies, 2013. According to the Vulnerab-
ility Statistics Report 2014 of a company called edges-
can, on average, web applications contain two high
or critical vulnerabilities, which may have a signific-
ant negative impact on IT operations or other divi-
sions edgescan, 2014. Missing or bad input valida-
tion allows users to manipulate values and therefore
result in security flaws. This thesis focuses on two

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

L T - N R v e

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

902

of the most critical vulnerabilities, primarily chosen
from the »OWASP Top Ten«. This list stands for a
broad agreement of security experts about what the'
most critical web application vulnerabilities are and
is part of the »Open Web Application Security Pro-
ject« (OWASP) »OWASP Top Ten Project«, 2015. Un-
derstanding the function of the vulnerabilities that are
pointed out in this section is indispensable in order to
understand this thesis. These two vulnerabilities were
chosen from amongst the "OWASP Top Ten«, because
all WAFs attempt to block these, while the remaining
eight vulnerabilities might be mitigated by only some
WAFs.

6.1 SQL Injection

Most of the dynamic web applications in the inter-
net store information like user accounts, payment de-
tails or product data in a database. A web applic-
ation requests data from the database by Structured
Query Language (SQL). Inserting SQL into an applic-
ation field is called SQL Injection. OWASP ranks SQL
Injection amongst similar injections as the most crit-
ical security flaw of the OWASP Top Ten. By using
SQL Injections the return value of the database or the
database itself may be altered. Furthermore issuing
system commands may be possible in certain circum-
stances. Injection may be possible by GET and POST
parameters or through HTTP headers, e.g. the Cookie
or the User-Agent field OWASP, 2013.

The following example shows a PHP source code of
an insecure login function, that validates a username
and a password using SQL:

"SELECT %= FROM users WHERE username = "
Khalil" or 1=1 #" AND password = "" ";

Susername = $_POST["username"];

Spassword = $_POST|["password"];

$sgql = "SELECT % FROM users WHERE
username = "+$Susername+"
AND password = "+Spassword;

Sresult = mysql_query($sql);
if (mysqgl_num_rows (Sresult)
echo "Sucessful Login";

startSession();

t=0){

Listing 1: Source code that is vulnerable to SQLi

The code in Listing 1 stores the POST parameter user-
name in the variable $username and the parameter
password in the variable $password. These two vari-
ables are then crafted into a SQL string, which is,
passed to the variable $sql. Then $sql is passed to,
the function mysql_query(), which is responsible for;
querying the database. This SQL Query checks in the
table ,users” for any rows with the name $usernamet
and the password $password. If it finds a matching’®
row, the row is sent back as a return value. Otherwise
no row is returned. A malicious user can bypass this’
authentication by inserting the following payload:

Listing 2: SQL query after manipulation

The double quote (") after "Khalil" encloses the user-
name string. The “or 1=1" adds a second condition
to the WHERE clause. The number sign (#) is a way
to add a comment in SQL and instructs the data-
base not to process the remaining part. The database
checks every row for the username , Khalil” or where
1 equals 1. Since 1 equals 1 is always true, every row
in the database is returned back and the user is logged
in.

6.2 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is the injection of mali-
cious script code, mostly JavaScript, into an applica-
tion field. Cross-site scripting exploitation targets end
users. The injected script is executed by the other
user’s web browser. According to the OWASP Top
10 XSS is the most prevalent web application security
flaw and is rated as the third most critical vulnerabil-
ity in web applications OWASP, 2013.

XSS can be used to:

e steal session information like session cookies or
session tokens

e redirect to another site (e.g. a phishing site)
¢ spread false information
¢ spread malware

The following sections describe three different vari-
ants of XSS.

Stored XSS

Stored XSS occurs when a malicious script supplied
by a user is persistently saved and included without
being filtered in an HTML response.

The following code snippet gives an example Ran-
domStorm, 2015c:

Khalil" or 1=1 # 9

TO

With this input the query that is sent to the database
is as follows:

Smessage = $_POST["message"];
if (Smessage != null) {
mysql_query ("INSERT INTO messages (

message) VALUES "+S$Smessage+");
}
Sresult = mysgl_query ("SELECT message FROM
messages") ;
echo "<html><body>";
while ($row = mysql_fetch_assoc ($Sresult)) {
echo "Message: '+Smessage+' \n";

}
echo "</body></html>";

Listing 3: PHP script that is vulnerable to Stored XSS

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

903

This code saves the value of the post parameter "'mes-
sage’ in the variable ‘$message’. The value of "$mes-
sage’ is then added to a database. The page prints
every message that is stored in the database. Any user
who visits this page will see the stored messages. If
the following code is injected:

<script>alert ('XSS')</script>

anyone who requests this page will see an alert box
with the text “XSS” (see figure 1).

Note: The alert function is commonly used to initially
test for a XSS vulnerability and to create an easily
visible evidence that the injected code has been ex-
ecuted.

Reflected XSS

Reflected XSS occurs when malicious script is in-
cluded in a response after being sent to an application.
In this type of XSS the script is not stored persistently
on the web server. Attackers can use this vulnerabil-
ity to send other users a maliciously constructed link
(see listing 5). If the URL is invoked, the injected code
is executed.

The following PHP code is vulnerable to Reflected
XSS RandomStorm, 2015b:

Smessage = "Hello " + $_GET["name"];

echo $message;

Listing 4: The GET parameter 'mame’ is printed
without any filtering

The value of the GET parameter ‘'name’ is included
into the variable ‘$message’. This message is then
printed.

www.website.com/page.php?name=<script>alert
('Visit www.harmfulsite.com for free
money ') </script>

Listing 5: Invoking this URL leads to an alert box
which spreads a phishing link

DOM Based XSS

DOM Based XSS is similar to Reflected XSS with
the difference that the malicious script is not passed
to the web server. Instead, the XSS is directly ex-
ecuted in the victim’s browser. This is possible be-
cause JavaScript can access the browser’s Document
Object Model (DOM) and the application processes
data from the URL to dynamically update the content
of the page OWASP, 2015b.

A DOM Based XSS attack can be accomplished by
sending the following URL to a victim:

www.website.com/page.html#name=<script>
alert (1) </script>

Listing 6: URL containing DOM based XSS

7 Web Application Firewall

A Web Application Firewall is an intermediary device
that stands between a user and a web server and oper-
ates on the Application Layer Level of the OSI model.
HTTP requests to the web server are analyzed by the
WAF. The main purpose of a WAF is to detect mali-
cious input by checking it against a set of rules. After
this process, the WAF decides whether a request will
be blocked or forwarded to the web server. Because
there is a possibility that malicious requests are not
detected, some WAFs also inspect the HTTP response
and check for deviations from usual responses.

7.1 Benefits

This section outlines the benefits of WAFs.

Virtual Patching

»Virtual patching is the process of addressing security
issues in web applications without making changes to
application code.« (Ristic, 2012b, p. 6) This concept
is useful to immediately mitigate vulnerabilities in
software that cannot be modified, like third-party
products or software with a bad documentation or
when patching a security flaw takes time. A WAF can
provide mitigation until a patch is applied OWASP,
2015a.

Real-time Monitoring

Similar to an Intrusion Detection System (IDS), WAFs
have the ability to access and inspect HTTP traffic
stream in real-time in order to detect attacks as they
happen. This makes it possible to respond to an at-
tack fast (Ristic, 2010, p. 5).

Logging

Most web servers contain logging functionality in
general, but insufficient logging with regard to secur-
ity. WAFs can focus on security while logging HTTP
Traffic. Also, transaction data, which is important
for forensics purposes, can be included (Ristic, 2010,

p-5).

Fulfilling industrial standards

A WAF can also be used to fulfill industrial standards
like the data security standard (DSS) of the Payment
Card Industrie (PCI). This standard defines the min-
imum level of security needed for organizations to
process credit card data. The DSS allows the adoption
of a WAF as a viable replacement for regular security
code reviews OWASP, 2015a.

7.2 WAF Products

This section gives an overview of WAF products.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

904

[% 192.168.88.102/dvwa/vulnerabilities/xss_s

Die Seite auf 192.168.88.102 meldet:

ﬁ -

Vul

Home

Instructions
Setup

Brute Force
Command Execution

MName *

Message *

Sign Guestbook

Scripting (XSS)

CSRF

File Inclusion

SQL Injection

SQL Injection (Blind)
Upload

XSS reflected
EXI.

Name: Test
Message:

Figure 1: Stored XSS Vulnerability

7.2.1 Commercial

Most organizations deploy commercial WAFs in their
environment. Gartner publishes a WAF Market re-
search report and publishes a »Magic Quadrant« for
WAFs (see figure 2) on a yearly basis. This Magic
Quadrant visualizes the results of the research. This
report rates commercial WAFs, which are often sold
as hardware appliances and cost up to a five-digit
amount, and gives a good overview of current WAF
products on the market.

7.2.2 Open source

This section introduces two open source WAFs.

AQTRONIX WebKnight

AQTRONIX WebKnight is a WAF for the Internet In-
formation Services (IIS) web server which works on
Windows operating systems. It is easily deployed
with an .exe installation file and operates as a module
on the web server. It offers features like logging, brute
force prevention and access control. The latest ver-
sion is 4.2, which is only available to customers who

pay for support. The latest version free of charges is
4.1 AQTRONIX, 2014.

ModSecurity

ModSecurity is a cross-platform WAE. It can be in-
stalled as a module for Apache Web Server, IIS and
NGINX or on a separate server as a reverse proxy. It
features real-time monitoring, logging, access control
and web application hardening. After the installa-
tion, ModSecurity only inspects traffic without block-
ing it. In order to block malicious requests, the config
has to be changed and rules must be loaded Ristic,
2010. ModSecurity includes the »OWASP Core Rule
Set« OWASP, 2015c, which offers a better security
than commercial WAFs like CloudFlare or Incap-
sula Zero Science Lab, 2013. But on the other hand,
these rules are very restrictive and lead to numer-
ous false positives. For example a value which con-

tains a double quote is blocked. Using this rule set in
front of a modern CMS like WordPress, is only prac-
ticable if several rules are disabled. Additionally to
the OWASP Core Rule Set, other free and commer-
cial rule sets are available. ModSecurity has its own
specific syntax for writing rules. A Whitelist can also
be developed for ModSecurity. The latest version is
2.9, which was released in February 2015 ModSecur-
ity, 2015.

7.3 Deployment Options

WAFs have a number of different deployment op-
tions. These differ in their infrastructural format, per-
formance, ease of deployment and the features they
offer. This section gives an overview of the different
alternatives.

7.3.1 Reverse Proxy

The most common adoption of a WAF is as a reverse
proxy. »A reverse proxy [...] appears to the client just
like an ordinary web server. [...] The client makes or-
dinary requests for content in the name-space of the
reverse proxy. The reverse proxy then decides where
to send those requests, and returns the content as if
it was itself the origin.« Apache, 2013 In this mode
the WAF has its own IP Address. The user has no
knowledge of the web servers behind the WAF and
points his requests only to the WAF as shown in fig-
ure 3. These are inspected before the WAF sends a
seperate request to the back end. This setup gives the
WAF full control over the traffic, enabling it to alter
HTTP Traffic according to its policies. Furthermore,
the proxy can be used as a Centralized Login Service
to authenticate users. This offers the advantage, that
the back end only receives requests from authentic-
ated users, which minimizes the attack surface. This
principle is especially often used in the E-Banking sec-
tor. Features like Load Balancing, HTTP Caching and
Compression can be used as well.

On the other hand this deployment also has some dis-
advantages. First, latency is increased. Moreover,

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 905

Magic Quadrant

F5
(-
Imperva
®]
Citrix
o
Akamai
Q
Barracuda Networks .
NSFOCUS Radwal
. Fortinet e
.Trusimve
Penta Security . . DenyAll
T . Ergon Informatik
. Positive Technologies
[FE] . - .
E : United Security Providers
[AdNovum
=2
= DBAPPSecurity
= @
=
COMPLETENESS OF VISION - > As of July 2015
Source: Gartner (July 2015)
Figure 2: Gartner’s Magic Quadrant of WAFs
https/443
Apache
User 1 192.168.10.11
https/8443
User 2

Tomcat
192.168.10.12

Web Application Firewall

http/80

Apache
192.168.10.13

Figure 3: WAF forwards requests to the appropriate webserver

deploying the WAF as a reverse proxy is not trivial 7.3.2 Bridge Mode
and adds complexity to an infrastructure. In the case

that the WAF crashes, the web servers are not reach-
able (Pubal, 2015, p. 4-5). In the bridge mode the WAF receives requests and for-

wards them to the web server without any modifica-

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

906

tion. The WAF can block malicious traffic by dropping
packets. This increases the performance compared to
the reverse proxy. The downside of this mode is that
some functions like the modification of requests are
not available. A visualization of the setup can be seen
in figure 4.

7.3.3 Monitoring Mode

A WAF deployed in monitoring mode is similar to an
Intrusion Detection System (IDS). A copy of the HTTP
Traffic is sent to the WAF through a monitoring port
on a network device as seen in figure 5. It inspects the
traffic without altering traffic. One exception is that,
if enabled, the WAF has the ability to interrupt the
communication between a user and a web server by
sending TCP-reset packets. The monitoring mode is
optimal for testing purposes since it has only little im-
pact on the application flow and does not add latency.
By analyzing the traffic in this mode, false positives
and negatives can be analyzed and eliminated before
deploying the WAF in a different mode. The monitor-
ing mode is also referred to as passive mode (Pubal,
2015, p. 6).

7.3.4 Embedded Mode

In the embedded mode the WAF is installed as a
plugin or service module directly on the web server
as seen in figure 6. This allows an easy deploy-
ment. For example ModSecurity can be installed on
the Linux distribution »Debian« directly from the re-
positories. 1

Disadvantages are that the WAF shares the same
server resources as the web server, and features like
load balancing, caching, etc. are not available (Ristic,
2010, p. 8).

7.3.5 Cloud Mode

A newly-arranged way to deploy a WAF is the cloud
based deployment (see figure 7). The approach is sim-,
ilar to a reverse proxy with the difference, that the,
WAPF is external to the corporate network. Gartner;
prognosticates that «By year-end 2020, more than 50
% of public Web applications protected by a WAF wills
use WAFs delivered as a cloud service or Internet-
hosted virtual appliance — up from less than 10 %
today» D’'Hoinne et al., 2015. The DNS entry has to
be changed to the WAFs IP address. Organizations
have to trust the cloud hoster and provide SSL Keys
in order to decrypt traffic. Latency is increased as
more stations have to be passed through (Pubal, 2015,

p-7).

7.4 Functionality

An incoming request goes through a couple of steps
before a WAF decides whether this request is mali-
cious or not as seen in figure 8. The following section

describes these steps and gives an outline on the func-
tionality of WAFs.

7.4.1 Pre-processor

A request goes through the WAF’s pre-processor first.
The pre-processor decides, whether the request will
be processed further and therefore be validated by the
rule set or not. For example a WAF may skip requests
which originate from certain trusted IP addresses.

7.4.2 Normalization functions

Attackers have developed payloads to pass rule sets
by using evasion techniques like encodings or capital
letters. In order to prevent such techniques, WAFs ap-
ply normalization functions on user input before eval-
uating rules against it. These functions help to con-
vert »input data [...] from the raw representation into
something that, ideally, abstracts away all the evasion
issues« (Ristic, 2012b, p. 8). Due to these transforma-
tion functions, writing rules is greatly simplified be-
cause an administrator does not need to be know-
ledgable about the various types of payloads Cisco,
2013. Also, the amount of rules is greatly decreased
resulting in a minimized latency.

ModSecurity contains several of these functions. See
table 1 for examples.

The following rule

SecRule ARGS "@contains insert into" \
phase:2, t:lowercase,t:
compressWhitespace

Listing 7: Policy with transformation functions Ristic,
2010

will match these strings

into
INTO

insert
INSERT
iNsSErT iNtO
Insert Into
INSERT\t INTO

Listing 8: Variations of »insert into« that will be
blocked

7.4.3 Security Models

Security Models define how to enforce security
policies, which consist of regular expressions. WAFs
check user input against these policies and in case
of a match, a request is, depending on the security
model, either blocked or forwarded. The three dif-
ferent Security Models are described in the following
paragraphs.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 907

Web Application Firewall

User Web Server

Figure 4: WAF acts as a bridge

Router

User
Copied HTTP Traffic Web Server
Web Application Firewall
Figure 5: WAF deployed in monitoring mode
Web Server
User WAF
Module Web
Application

Figure 6: WAF deployed in embedded mode

compressWhitespace | converts whitespace chars (\f, \t, \n, \r, \v) to spaces
hexDecode decodes a hex-encoded string
lowercase converts characters to lowercase
removeNulls removes NULL bytes from input
replaceComments replaces comments with single spaces
urlDecode decodes an URL-encoded input string

Table 1: ModSecurity normalization functions

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

B N e

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

908

User

Web Server

Web Application
Firewall in a cloud

Figure 7: WAF deployed in cloud mode

Perform

Run the
Pre-processor

Incoming
EES

Normalization
Functions

Validate Forward to

Input

back end

Figure 8: Request processing

Positive Security Model

The Positive Security Model, also referred to as
Whitelisting, contains Policies defining characterist-
ics of allowed input (See Listing 13). If a policy is
matched, the request is forwarded. Otherwise it is
blocked. Policies are specific to the functionality of
an application and have to be individually written for
every application. The development of these policies
can be time-consuming and depend on the complex-
ity of the web application. A comprehensive un-
derstanding of the application is needed in order to
not create too permissive policies which allow mali-
cious requests or even restrictive policies, which limit
the applications usability. One key advantage of the
positive security model is that by specifying allowed
traffic, newly developed attacks are forfeited.

Model and consists of policies defining disallowed
patterns and characters. If a policy is matched, the
traffic is blocked. Otherwise it is forwarded. A black-
list is mostly shipped with the WAF and is maintained
by the vendor or by a community, as it is the case with
ModSecurity. This allows a fast adoption of the WAF
without the need to understand the functionality of
an application. Because of the huge amount of pos-
sible attacks and their transformations, the negative
security model contains numerous policies. Every re-
quest has to be checked for a matching policy and is
therefore resource-consuming.

The Negative Security Model tends to false positives.
Unmalicious traffic may be blocked and therefore the
usability is reduced. For example a policy which ap-
plies on the word »select« blocks a request containing
the following sentence:

<Location /application/register.php>
Allow only numbers in userage
SecRule ARGS:userage "!~\d+s$"-
</Location>

"I had to select the right equipment."

Listing 9: Whitelisting example

The ModSecurity rule in listing 9 applies for the path
’/application/register.php’. When a request with this
path reaches the WAF, it analyzes the value of the
parameter “userage’ and tries to match it against the
regular expression which allows only numbers.

Auto learning function

Some WAFs offer an auto learning function to sim-
plify the task of creating a Whitelist. The objective
is to collect HTTP conversations and teach the WAF
what normal traffic looks like so that it can block ab-
normal traffic.

1

Negative Security Model)

The Negative Security Model, also referred to as
Blacklisting, is the opposite of the Positive Security

Listing 10: Unmalicious input

The policy could be altered to match the word »se-
lect« only if there is a preceding word »union«. As the
adjustment of policies in order to reduce false posit-
ives is an ongoing process, complicated patterns have
to be created as seen in Listing 11. This makes the
maintenance of these patterns difficult. Furthermore,
this model focuses solely on known attacks. The fast
advancement of technologies and introduction of
new functions makes it tough to prevent vulnerabil-
ities before they are known. There is no omniscience
about every vulnerability that could exist for every
product. Thus, WAF vendors continuously make an
effort to blacklist every possible threat.

SecRule ARGS

"(?1) (<script [*>]*>[\\s\\S]*?<\/script
[*>]x>|<script [*>]*>[\s\S]*?<\/script
[[\s\S]]1*[\s\S]|<script[~>]*>[\s\S
1%2<\/script [\s]*[\s]|<script [*>]*>[\s\

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

909

S1x?<\/script|<script [*>]*>[\s\S]*?)"

Listing 11: A complex regular expression to block
<script> and its different dictions

Hybrid Security Model

The Hybrid Security Model provides two levels of
protection by combining the Negative Security Model
and the Positive Security Model. In the first step, re-
quests are matched against the whitelist’s rule set. If
a request fulfills a whitelist policy, it is additionally
matched against the blacklist’s rule set Citrix, 2013.
Thereby a whitelist rule that is too permissive can
only be exploited if a payload also passes the black-
list’s rule set. The objective of this model is to pre-
vent both Zero-day Exploits and known vulnerab-
ilities. This Security Model is only used by a few
WAFs.

Comparison of Security Models

The following table compares the Positive Security
Model with the Negative Security Model.

7.4.4 Input Sanitization

Another concept that can be used for input validation
is Input Sanitization. Instead of blocking a request,
the WAF removes malicious characters before it for-
wards the request to the back end. This improves the
usability significantly as false positives do not lead to
an interruption of the User Experience. Sanitization
works similar to the Negative Security Model. The
WAF checks input values against policies and erases
malicious characters upon a match.

This security mechanism is not used very often due to
the fact that it adds further complexity, which makes
it more prone to errors.

Supposing a policy which checks for the »<script>«
tags only once and upon a match removes them, the
following input could lead to a bypass:

<scr<script>ipt>alert (1) </scr</script>ipt>

Listing 12: Input value

Applying this policy leads to the following result:

<script>alert (1) </script>

Listing 13: Input sanitization result

Input Sanitization is only used by a few WAF
vendors.

7.5 Additional Features

Web server hardening — protection against web
server mis-configuration by defining allowed HTTP
Features like methods and headers.

Caching — Often requested web content is cached on
the WAF thus reducing load on web servers and in-
creasing performance (Beechey, 2009, p. 4).

Compression — Web content is compressed by
the WAF, which is then decompressed by the cli-
ent’s browser to achieve more network through-
put (Beechey, 2009, p. 4).

SSL Acceleration — speedens SSL processing by
means of hardware based SSL decryption and reduces
load on the back end (Beechey, 2009, p. 4).

Load Balancing — distributes web requests to differ-
ent servers to improve resource use, minimize re-
sponse time and prevent a server from overload-
ing (Beechey, 2009, p. 4).

Connection Pooling — uses the same back end con-
nection for multiple requests to reduce a TCP over-
head (Beechey, 2009, p. 4).

7.6 Summary

Web Application Firewalls give a good overview of
the traffic at the Application Layer Level. Features
like Caching, SSL Acceleration or a Centralized Lo-
gin Service make deploying a WAF more attractive to
organizations. The most important feature is the abil-
ity to mitigate vulnerabilities for several applications
with ease, which adds an additional security layer to
the infrastructure. Yet, it may decrease the user exper-
ience and usability by increasing latency or by block-
ing valid requests. WAFs may give a false sense of
security and may be taken as an excuse for bad code.
For an attacker, exploiting a vulnerability gets more
challenging. Nevertheless, bypasses have been found
in the past and will still be a concern for WAF produ-
cers in the future.

8 Bypassing Methods and
Techniques

This chapter explains important and common WAF
bypassing methods and techniques. These are di-
vided into three categories (see figure 9). Some meth-
ods cannot be distinctly linked to just one category
and may fit into two categories.

Note: Bypassing techniques that worked for outdated
web server versions or programming languages were
not included because of the unlikeliness that these are
still in use.

9 Pre-processor exploitation

The pre-processor, which decides whether input will
be validated or not, runs through different decision
points. Every decision point may be prone to a mis-
take and may lead to a bypass. Methods that exploit

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

910

Positive Security Model

Negative Security Model

¢ deny all except good requests
+ prevents Zero-day Exploits
-+ more secure than blacklist

— creating policies is a time-consuming
process

— comprehensive understanding of
application is needed

¢ allow all except bad requests
shipped with WAF
fast adoption

little knowledge needed

+ o+ 4+ o+

protects several applications
— tends to false positives
— resource-consuming

— maintaining list ongoing and
difficult process

Table 2: The Positive Security Model in compare to the Negative Security Model

Pre-processor

exploitation

Impedance
Mismatch

Rule Set
Bypassing

Figure 9: Categories of bypassing techniques

the pre-processor and avoid the WAF’s rule set are de-
scribed in this first category.

A real example for pre-processor exploitation can be
found in the »Protocol-Level Evasion of Web Applica-
tion Firewalls«, a paper written by Ivan Ristic (Ristic,
2012b, p. 4-5). A web application was protected by a
WAF deployed in monitoring mode. The WAF was
bypassed by a simple change in the Host header. This
header is used to differentiate between hosts, which
share the same IP address and port. By adding a
single dot character to the end of the Host header
value (see 14), the WAF assumed that this request is
for another application than the one it is protecting
and therefore skipped the input validation and for-
warded the request to the back end. As fully-qualified
DNS domain names contain a trailing dot, the URL
still lead to the same host and the web server pro-
cessed this request. Thereby any payload could be
sent to the web server without being analyzed by the
WAE

GET /index.php?p=SOME_PAYLOAD HTTP/1.0
Host: www.example.com.

Listing 14: A Bypass caused by the trailing dot in the
host header

In this case, the decision point, whether this request
is intended for the defensible web site or not, was ex-
ploited.

The following sections explain some possible decision
points.

9.1 X-* Headers

A WAF may be configured to trust certain IP ad-
dresses like itself (127.0.0.1) or a device within the net-
work. Any request sent from this IP address is for-
warded without validation of the input. If the WAF
retrieves the IP address from a header in control of
the user, the WAF security mechanisms may be by-
passed Codewatch, 2014.

A user is in control of the following HTTP Headers:
¢ X-Originating-1P
e X-Forwarded-For
* X-Remote-IP
e X-Remote-Addr

and can manipulate a request to include these as seen
in figure 10. These headers can be set with internal IP
addresses, either disclosed by the customer or gained
from the information gathering phase of a penetra-

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

911

tion test. If the internal network IP address range is
known, a brute force attack can be executed to enu-
merate every possible network IP address.

Security mechanisms like CAPTCHAs, which are
used to identify a user as human, or log in functions
which restrict access to certain web sites to authorized
users, may be configured to not apply if the user’s IP
addresses is trusted. The method described in this
section may be used to exploit these security mech-
anisms Drops, 2015.

9.2 Bypassing parameter verification

PHP will remove characters like whitespaces from
parameter names or transform them into under-
scores Ristic, 2012b.

The following request contains an URL-encoded
whitespace ("%20’) and is interpreted by PHP as
valid:

http://www.website.com/products.php?%$20
productid=select 1,2,3

The WAF detects a parameter called ” productid” (with
a leading whitespace), while the back end removes
the whitespace and perceives a different parameter
name.

ASP removes any % character that is not followed by
two hexadecimal digits Ristic, 2012b.

http://www.website.com/products.aspx?%
productid=select 1,2,3

Similar to the example above, the WAF detects a para-
meter called "%productid’, while the back end re-
moves the percent sign and perceives a different para-
meter name.

A WAF which does not reject unknown parameters
may be bypassed with this technique.

9.3 Malformed HTTP Method 1

Insecurely configured web servers may accept mal-
formed HTTP methods and respond with the same
response as to a GET request as seen in figure 11.

If a WAF only inspects requests with GET and POST
as method and not other HTTP methods, using a mal-
formed HTTP method may result in a bypass Drops,
2015.

9.4 Overloading the WAF

A WAF may be configured to omit input validation
when the performance load is heavy in order to not
decrease user experience by delays. This often applies
to embedded WAFs which share the same resources;
as the web server. To exploit this feature, a great deal
of requests can be sent to a WAF and thereby over-
load it. There is a chance, that some requests will not
go through the input validation and thus may not be
blocked Drops, 2015.

9.5 Injection via cookies

Some WAFs only filter GET and POST parameters,
but not cookies. A few applications process cookie
values and use them for SQL queries. For example
PHP allows to configure the $_REQUEST function to
extract values not only from GET or POST paramet-
ers, but also from cookies. This was the default con-
figuration in older PHP versions Ristic, 2012b.

Data in cookies may be in plain text or encoded in
base64, hexadecimal or hashes (MD5, SHA1). If a user
knows how a cookie is created and can include mali-
cious code by recreating it, he can attempt to perform
a SQL Injection.

10 Impedance Mismatch

WAFs interpret requests, analyze and forward them
to the web server. There is a chance, that the WAF in-
terprets a request differently than the back end. This is
an important concept for the bypassing of WAF secur-
ity mechanisms and is referred to as Impedance Mis-
match (Ristic, 2012b, p. 4).

Techniques, which exploit this principle, are de-
scribed in this section.

10.1 HTTP Parameter Pollution

HTTP parameter pollution is the term for sending a
number of HTTP parameters with the same name.
There is no HTTP Standard defining how to interpret
multiple parameters which share one name. While
the back end may interpret the first value, the last
value, or a combination of these both, a WAF sees two
single parameters (Ristic, 2012b, p. 12).

Assuming that the following request is sent to a web
server

http://www.website.com/products/?productid
=l&productid=2

Listing 15: Valid Sentence

various technologies process this differently. Table 3
gives an overview of the behavior of the most im-
portant web technologies (Carettoni & Di Paola, 2009,
p-9).

The comma of the concatenation in ASP.NET applic-
ations can be used to craft a valid SQL query and is
therefore particularly useful for SQL Injection. An ex-
ample for this kind of Impedance Mismatch is a by-
pass for ModSecurity found in 2009. ModSecurity
would successfully block the following request:

http://www.website.com/products.aspx?
productid=select 1,2,3 from table

Issuing the following request would bypass the
rules:

T

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

1

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

912

GET /dvwa/vulnerabilities/xss_r/?name=PAYLOAD HTTP/L.L
Host: 192.1658.88.102

Upgrade-Insscure-Requests: 1

-Originating-TP: 127.0.0.1
~Forwarded-For: 127.0.0.1
~Remote-1P: 127.0.0.1
~Remote-Addr: 127.0.0.1
pousie=) v i e e m AL Helldte, sdch
Aecept-Language:

TZInr

Lecept: text/html,application/xhtml+xml, application/xml;q=0.9, image/webp, */*;q=0.8

User-Agent: Mozilla/5.0 (Windows NT £.1; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157

de-DE,de;q=0.8,en-U3;q=0.€,en;q=0.4,ac;q=0.2

Figure 10: A request with manipulated X-* Headers

Raw | Params | Headers | Hex

Raw | Headers | Hex | HTML | Render

HELLO12Z3 /zielgruppen/studierende.html HTTP/1.1

Host: frankfurt-university.de

Aecept:

text/html, application/xhtml+xml, application/xml; q=0.59, im
age/webp, */*;q=0.8

Upgrade-Insecure-Requests: L

User-Agent: Mozilla/5.0 (Windows NT &.1; WOWE4)
AppleWebKit/537.36 (KHTML, likes Gecko)
Chrome/44.0.2403.157 Safari/537.3¢€

Referer: http://frankfurt-university.de/
Aecept-Encoding: gzip, deflate, sdch

Aecept-Language:

de-DE,de;q=0.8,en-U3;¢=0.€,en;=0.4, ar;q=0.2

Cookie: fe_typo_user=4difaaffabcl97dSLeLdS8dbSLEL573c

T

HTTP/1.0 200 CK

o
©
o
o
-
=
=
o
=]
wn
v
s
o
—
tn
—
o
i
)
w
o
&=
=]
-

Server: Apache

X-Powered-By: PHP/5.3.27-pl0-gentoo
Set-Cookie:
fe_typo_user=Sabc4flT7af6a560c5h732e55629141=5;
Cache-Control: max-age=3£600

Expires: Thu, 03 Sep Z0L5 13:27:23 GUHT
Vary: Accept-Encoding

Content-Length: 24000

Content-Type: text/html; charset=utf-8
¥-Cache: MISS from squid02
¥-Cache-Lookup: MISS from squid0Z:E0
Via: 1.0 squiddZ (squid/3.1.22)
Connection: keep-alive

path=/

) XHTML 1.0 Transitional//EN"

Figure 11: The FRA-UAS web site accepts "HELLO123" as HTTP method and returns an HTTP 200 response

Back end Behavior Processed

ASPNET Concatenate with comma | productid=1,2

Jsp First Occurrence productid=1

PHP Last Occurrence productid=2

Perl CGI / Apache First Occurrence productid=1

IBM Lotus Domino Last Occurrence productid=2

IBM HTTP Server First Occurrence productid=1

Python / Zope List data type productid=[1,2]

Table 3: Parameter Handling of the most common technologies

http://www.website.com/products.aspx?
productid=select l&productid=2,3 from
table

Listing 16 shows a code vulnerable to HPFE.

As the underlaying technology is ASP.NET, both val-
ues are concatenated with a comma. The result is
that the WAF does not block the request and the back
end receives the same string, that would have been
blocked without HTTP parameter pollution. 1

For a more detailed overview of parameter handling
of different technologies see the attachments.

10.2 HTTP Parameter Fragmentation :

HTTP Parameter Fragmentation (HPF) is referred to
when subsequent code is split between different para-
meters. A WAF may have issues recognizing mali-
cious code if it is fragmented.

sgql = "SELECT » FROM table WHERE uid = "+
S_GET['uid']+" and pid = "+S$_GET['pid'
]+" LIMIT O,1"

Listing 16: Vulnerable Code to HPF

The following request:

http://www.website.com/index.php?uid=1
union/*&pid=+/select 1,2,3

Listing 17: Fragmented SQL code

would result in this SQL Query:

sgql = "SELECT » FROM table WHERE uid = 1+
union/* and pid = x/select 1,2,3"

The part between the '/* and "*/’ is processed as
a comment and is therefore ignored. The SQL En-
gine accepts the comment as an alternative for the

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

913

whitespace and therefore the query becomes valid. A
WAF that examines parameter only individually can
be bypassed with this method.

10.3 Double URL Encoding

The normalization function of a WAF transforms URL
encoded characters into ASCII Text. If this function
decodes data only once, the WAF may be bypassed by
using a double URL encoded character Drops, 2015.
For example a URL encoded ’s’ results into "%73’. En-
coding "%73’ results into "%25%37%33’.

This is how it works in detail:

1. The following request with double URL encoded
characters is sent:

1 |union %25%37%33elect 1,2,3

2. The WAF perceives the URL encoded characters
and decodes them once.

3. After decoding, the WAF tries to match the
policies. No match is found.

4. A request with the following value is forwarded
to the web server:

1 |union %73elect 1,2,3

5. The web server decodes the URL encoded char-
acter and executes the payload.

10.4 Content-Type Obfuscation

The Content-Type acts as an indicator for the type of
the data in the body of a HTTP packet. This is neces-
sary for the back end application in order to interpret
the body data correctly. An example request with a
Content-Type header can be seen in figure 12.

Similar to web servers, WAFs handle the body data
based on the type of the Content-Type header. Modi-
fying this header may lead to a bypass, especially if
the processing is hard-coded in the backend applica-
tion.

To cause the WAF to skip the body or guess a data
type, three methods should be tested:

1. Removing the Content-Type header.
2. Inserting an arbitrary string as value.

3. Trying different multipart/form-data options.
A WAF may only interpret requests based on
known Content-Types.

A full list of Content-Types can be found here!.

1 http://www.sitepoint.com/web-foundations/mime-types-
complete-list/

11 Rule Set Bypassing

WAFs block malicious requests upon signatures. Lan-
guages like SQL or JavaScript are flexible and there-
fore covering all possible transformations with regu-
lar expressions is a tough, if not impossible, task. This
section gives an outline on how to find payloads that
are not blocked by the WAF.

11.1 Brute Force

Brute Force in the context of WAF bypassing is the
enumerating of payloads with the perspective that a
payload will not be detected by the WAF Abdul Rafay
Baloch, 2013. These payloads can be found in papers,
cheat sheets, etc. For example a recently published
paper is the »Evading all Web-Application Firewall
XSS Filters« written by Mazin Ahmed Mazin Ahmed,
2015. It discloses XSS payloads that are undetected by
various WAFs.

11.2 Reverse-engineering

The first step towards bypassing a rule set is by find-
ing out what these rules look alike and which pat-
terns are blocked. The more one knows about these
policies, the more likely one can find a bypass. This
is one of the reasons, why the policies of the vast ma-
jority of WAF products are kept secret. It can be said
that part of their effectiveness relies on the controver-
sial Security Through Obscurity principle.

»Security Through Obscurity (STO) is a pro-
cess of implementing security within a sys-
tem by enforcing secrecy and confidentiality
of the system’s internal design architecture.
Security Through Obscurity aims to secure a
system by deliberately hiding or concealing
its security flaws.« Cory Janssen, 2013

The National Institute of Standards and Technology
(NIST) recommends to not rely on this principle:
»System security should not depend on the secrecy
of the implementation or its components« Scarfone,
Jansen and Tracy, 2008.

A WAF relying on the STO principle may contain
actual vulnerabilities in its rule set. The reverse-
engineering of a rule set aims at getting an overview
of the used rule set in order to craft a payload that
exploits these vulnerabilities.

12 Approach to bypass a WAF

This chapter gives the penetration tester a practical
and systematic approach on how to bypass a WAF
based on the techniques and methods explained in
the previous chapter. The approach is divided in six
phases.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sitepoint.com/web-foundations/mime-types-complete-list/
http://www.sitepoint.com/web-foundations/mime-types-complete-list/
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

914

POST /dvwva/ login.php HTTP/L.1

Host: LlE9.254.1%58.101
User-Agent: Mozilla/S5.0 (Windows NT €.1;
Aooept:

Accept-Language :
Aoccept-Encoding:
Referer:
Cookie: security=high;
Connection: keep-alive

de,en-Us;q=0.7,en;q=0.3
gzip, deflate

Wowe4:
text/html, application/xhtml+xml, application/xml; gq=0.9, %/ *;q=0.8

http://1e9.254.198. 101/ dvwa/ login. php
PHPSESSID=b4fcvifuSaogZOkkgr povdEgse

rv:35.0) Gecko/2Z0100101 Firefox/35.0

Content-Type:

application/x-www—form—urlencodsd]|

Content-Length: 44

username=admin&épassword=passwvordélLogin=Login

Figure 12: The Content-Type header

13 Phase 0: Identify vulnerabilities
without a WAF

Time is a very valuable asset in a penetration test. The
objective is to improve the security level of an applica-
tion by identifying as many vulnerabilities as possible
in the agreed period of time. Fixing the root cause of
these vulnerabilities is the best way to make an applic-
ation more secure. WAFs make it tougher to exploit
a vulnerability. Penetration Testers should have the
chance to penetrate an application without a blocking
WAF to save time, provide more accurate results and
ultimately improve the security level more. A penet-
ration tester may be prevented by the WAF from ex-
ploiting a vulnerabilty. Yet a malicious attacker with
more time may find a flaw in the defense mechanisms
of the WAF and exploit the vulnerability.

Therefore it is highly advised to divide the penetra-
tion test into two parts:

1. Penetration with a disabled WAF: Identify ex-
ploitable functions and working payloads. Focus

on vulnerabilities that may be prevented by the
WAF later.

2. Penetration with an enabled WAF: Attack the
vulnerable functions found in part one. Also test
for the remaining vulnerabilities like application
design security flaws or session management.

At the end of this phase vulnerabilities should have
been identified. Try to find out which different nota-
tions of the payload also work.

Note: This phase is numbered zero because it may not
be realizable in some penetration tests, for example
because a productive system is attacked.

14 Phase 1: Reconnaissance

The reconnaissance phase is the first and a very im-
portant phase of a penetration test. The goal is to col-
lect as much information as possible about the applic-
ation and its functions to get a general idea of the tar-
get. In this phase the target is not attacked. Gathered
information is the basis for the attacks in the next
phases. As this thesis focuses on bypassing WAFs,
only elements especially related to this objective are
mentioned, although information that seems not rel-
evant in the first place may be useful later on. For a

broader overview of the reconnaissance phase access
the National Institute of Standards and Technology
(NIST) Scarfone, Souppaya, Cody and Orebaugh,
2008 or the OWASP OWASP, 2014 guidelines.

Web server

Web servers behave differently in terms of path hand-
ling, support of different encodings, etc. Knowing
which web server is in place saves time by minimiz-
ing the number of possible bypass methods. Thus, a
more focused attack can be executed. Not only the in-
formation which web server and which version is in
use is valuable, also knowing which operating system
the web server operates on may help.

For example Windows associates every file with a
short file name additionally to the long file name as
seen in figure 13. An Apache web server running on
Windows accepts short names as viable replacement
for long file names. A WAF that contains a whitelist
rule for a certain file can be bypassed by requesting
the same file using a short name Ristic, 2012b.

A table of the differences of web servers in terms of
path handling can be found in the attachments.

Programming language in use

Every programming language has its own oddities
and weaknesses. Knowledge about the programming
languages in use is fundamental and allows to narrow
down the amount of possibly working bypass meth-
ods. Knowing how parameters are handled by a cer-
tain programming language is especially useful.

A table of the differences of programming languages
in terms of parameter handling can be found in the
attachments.

The WAF

Before starting to attempt to bypass a WAE, it is sub-
stantial to know which WAF is deployed. Every WAF
has its own identification marks, which makes it pos-
sible to detect the WAF vendor. Some WAFs even
include their name in the response if a request was
blocked (see figure 14 and figure 15).

Detecting the WAF product is in some cases not
trivial and requires a thorough analysis of the re-

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

915

3.98%7 | BACKUP™ .PHG ﬂéckup—uptiuns—saueseruer.png
6,558 | DIRECT™ .PHG directory—name.png

4,648 FILE-N"1.PMG file—name.png
122,238 UULNER™1 _PHG |vulnerability_png
845 WINDOW™ .THET windows—short—names.txt
138268 butes

Figure 13: Windows short file names Acunetix, 2012

dotDefender Blocked Your Request

Please contact the site administrator, and provide the following

Reference ID:

a93d-fdc3-5f37-3a0d

Figure 14: dotDefender response NerdsHeaven, 2014

WebKnight Application Firewall Alert

received this page in error, please contact the
administrator of this web site.

Your request triggered an alert! If you feel that you have

What is WebKnight?

blocking certain requests. If an alert is triggered

AQTRONIX WebKnight is an application firewall for web
servers and is released under the GNU General Public
License. It is an ISAPI filter for securing web servers by

WebKnight will take over and protect the web server.

For more information on WebKnight:
http://www.aqgtronix.com/WebKnight/

AQTRONIX WebKnight

Figure 15: AQTRONIX WebKnight response cyberoperations, 2012

sponse headers and body. There are tools that carry
over this task. One well-known open source tool is
WAFWOOF GauWAFWO00F15 which can detect most of
the commonly used WAFs as seen in figure 16

One advantage is that this information allows to
search for recently discovered bypasses for this par-
ticular WAF product. Old bypasses might also work
in case that the WAF was not updated for a long time.
Public Bypasses can be found in archives like the Ex-
ploit Database Offensivel5.

Identifying the security model

One further important objective is to find out which
security model is in use. Certain bypass techniques
only work for one security model and therefore gain-
ing an insight into how the WAF operates is an im-
portant aspect.

Determining the type of security model can be
achieved by the following way:

1. Select an input field and guess which rules could
be set up for this field in a Positive Security
Model. For example if you have a field called
"id’, a whitelist policy will probably only allow
integer numbers.

2. Send a request that would be blocked by a whitel-
ist, but not by a blacklist.

e If the request is blocked, a positive or hybrid
security model is deployed.

¢ If the request is not blocked, a blacklist is de-
ployed.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

916

WA

By Sandro Gauci && We

Can test for these WAFs:

IOF - Web Application Firewall Detection Tool

G. Henrique

Figure 16: The list of WAFs wafw(0f detects

Internal network IP addresses

Internal network IP addresses can be used to exploit
the pre-processor. For further information refer to sec-
tion 9.1.

15 Phase 2: Attacking the
pre-processor

The objective of this phase is to omit the WAF’s input
validation by exploiting the pre-processor (see 9).

The following is a systematic approach to find an ex-
ploit:
1. Identify which processing decision points are in
place by sending individual requests, which con-
tain a payload that is blocked by the WAF (e.g.
»union select«). Every request should examine
solely one decision point.
2. Observe which requests are not blocked.
3. Attempt to develop an exploit.
The »WAF Research project» Ristic, 2012a contains
scripts (see the example in figure 17) to send indi-
vidual requests. The result shows which parts of a
HTTP request are inspected by the WAF. A request
that is not blocked is stated as »Missed« as seen in fig-
ure 18.
This tool can be used to automate the first and second
step of the above mentioned approach and is the basis
for step three.

16 Phase 3: Attempting an
impedance mismatch

This phase’s objective is to make the WAF misinter-
pret a request and therefore not block it while the back
end interprets the payload in such a way that it is ex-
ecuted (see Section 10). The prerequsite is that you
know what technology is used by the back end and
how it handles parameters and paths.

17 Phase 4: Bypassing the rule set

This phase is divided into five parts, which are de-
scribed below. For information related to bypassing
the rule set read section 11.

1. Brute force the WAF by sending different pay-
loads. If no working payload has been found,
continue with 2.

2. Reverse-engineer the WAF rule set in a trial and
error approach:

a) Send every symbol and keyword that can
be used to create a payload. To find these
symbols and keywords access cheat sheets
and documentations of the particular tech-
nology you want to exploit (e.g. SQL or
JavaScript). Also check for new functions.

b) Note which were allowed and which were
blocked.

c) Combine allowed strings and see whether
the combination is blocked.

d) Repeat this procedure until the non-blocked

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

917

/baseline-detection# cat

02-header-user-agent .tes

seline-detection/*.test

Figure 18: Result of the executed scripts

symbols and keywords are sufficient for a
working payload.

3. Craft a payload.
4. Test the payload:

¢ If the exploit was successful, continue with
part five.

¢ If the exploit was unsuccessful and

— the request was blocked: find out which
part of the payload caused the WAF to
block the request and replace it with an
equivalent.

— the request was not blocked: either

* the function you are attempting to
exploit is not vulnerable or

+ the payload is not valid. Test the
payload in a test environment.

5. Determine the possible damage that can be
caused by this vulnerability. Is it possible to ob-
tain sensitive data with the SQL Injection or to
steal a user’s cookie with XS5?

18 Phase 5: Identifying
miscellaneous vulnerabilities

Several vulnerabilities are caused due to an erroneous
application design like a broken authentication mech-
anism or privilege escalation. A WAF cannot detect
attacks which aim for such flaws. The examination of
an application for such custom vulnerabilities is im-
portant.

19 Phase 6: Post Assessment

Independently whether you have successfully by-
passed the WAF or not, explain to the customer that
as long as the underlaying app is vulnerable, there is
a chance that this vulnerability will be exploited. A
WAF mitigates risks by adding a second line of de-
fense, but cannot make sure that a successful attack
will not happen. Advise the customer to give his best
effort to analyze the root cause of a vulnerability and
fix it. For the time being, the vulnerability should be
virtually patched by adding new rules to the WAF.

20 Bypassing WAFs with
WAFNinja

This chapter introduces the tool WAFNinja and ex-
plains its functions. In the subsequent section the lab
environment which was used to test WAFNinja is de-
scribed. Finally the results of the conducted tests are
presented.

21 WAFNinja

WAFNinja is a CLI tool written in Python, which was
developed during this bachelor thesis. It shall help
penetration testers to bypass a WAF by automating
steps necessary for bypassing input validation. The
tool was created with the objective to be easily ex-
tendible, easy to use and usable in a team environ-
ment. Many payloads and fuzzing strings which are
stored in a local database file come shipped with the
tool. WAFNinja supports HTTPS connections, GET
and POST requests and the use of cookies in order to
access pages restricted to authenticated users. Earlier

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

918

versions of WAFNinja have been used in several pen-
etration tests which led to several improvements like
the implementation of the delay function. The tool’s
help message can be seen in figure 19.

A comprehensive documentation of WAFNinja can be
found in the attachments.

Modes

WAFNinja offers five different modes. These are de-
scribed in the following paragraphs.

fuzz

The purpose of the fuzz function is to automate the
reverse-engineering of the WAF’s rule set which is de-.
scribed in section 11.2. In contrast to reverse-engineer
the rule set manually, this function saves time, en-
hances the result by using a very broad amount of
symbols and keywords and displays results in a clear
and concise way. Figure 20 shows an example snippet
of WAFNinja’s results.

The following list is a description of the result
columns:

¢ Fuzz: Fuzzing string that was sent to the target.
e HTTP Status: Response’s HTTP status code.
¢ Content-Length: Response’s Content-length.

* Expected: Expected form of the fuzz string if sent
back in the response.

® Output: Fraction of the output where the sent
string is expected.
* Working: There are three possible values for the'
column "Working”:
- Yes: If the fuzz was not blocked and found
in the response.

— Probably: If the fuzz was not blocked, but
not found in the response.

— No: If the fuzz was blocked.

bypass

The bypass function automates the brute forcing of
the WAF by sending different payloads (as described
in section 11.1). These are taken from the database
and embedded in requests which are sent to the web
server. The response of every request is analyzed in-
dividually. The result is - similarly to the fuzz function
- either displayed in form of a table directly in the CLI
or written to a HTML file.

The following list is a description of the result
columns:

¢ Payload: Payload string that was sent to the tar-
get.

e HTTP Status: Response’s HTTP status code.
¢ Content-Length: Response’s Content-length.

¢ Output: Fraction of the output, where the sent
string is expected.

* Working: There are three possible values for the
column "Working”:

- Yes: If the payload was not blocked and
found in the response.

- Probably: If the payload was not blocked,
but not found in the response.

— No: If the payload was blocked.

insert-fuzz

The insert-fuzz function is used to add a fuzzing string
to the database.

The following line shows which parameters can be
used for this mode:

wafninja.py insert-fuzz [-h] -i

[-e EXPECTED] -t TYPE

usage:
INPUT

Listing 18: Usage of the insert-fuzz function

The expected parameter ("-e”) is used in case, that the
input is expected to be transformed by the web server
before it is sent back in a response.

insert-bypass

The insert-bypass function is used to add a payload to
the database.

The following line shows which parameters can be
used for this mode:

usage: wafninja.py insert-bypass [-h] -i

INPUT -t TYPE [-w WAF]

Listing 19: Usage of insert-bypass

The WAF parameter (-w’) is used to link a payload to
a specific WAF vendor. This is helpful if the penetra-
tion tester knows which WAF is in use and wants to
reduce the amount of payloads that are sent.

set-db

The set-db function is used to change the database
used by WAFNinja. This is especially useful, if the
tool is used in a team environment. Penetration test-
ers can share the same database. Thereby a payload
that was inserted by a team member will be available
for the whole team.

22 Lab environment

This section describes the lab infrastructure that was
created to test the WAFNinja tool in a legal environ-
ment. Virtual machines (VMs) with unique IP ad-
dresses have been deployed in order to simulate web
servers. These are protected by different WAFs.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

919

ndex. php?1d=FUZZ"

m/index. php™”

with others.

Figure 19: WAFNinja’s help message

[st | Conenilengih | Gmecied [ouni |

union/*/select 200 832

union/™/select TYPE html PUBLI ‘ Probably

uNion(sElect) 403 uNion(sElect)
union all select 403 union all select ‘_
union/™/alll™/select 200 839 union/™fall™/select TYPE html PUBLIC "W ‘ Probably
uNien all(sElect) 403 uNion all(sElect) ‘_
insert 200 "7 insert insert ‘ Yes

values 200 "7

values

values ‘ Yes ‘

Figure 20: Excerpt of the fuzz output

22.1 Vulnerable Applications

Two applications with security flaws are installed on
every web server. The following paragraphs give a
summary of these applications.

DVWA

The Damn Vulnerable Web Application (DVWA) is
an open source project. The main goal is to provide
an environment for testing vulnerabilities and tools
legally and get a better understanding, on how to se-
cure web applications. It contains two SQL Injection
vulnerabilities, a stored and reflected XSS vulnerab-
ility and several other vulnerabilities RandomStorm,
2015a.

There are three security levels:
1. low: no defense mechanisms

2. medium: insufficient, bypassable defense mech-
anisms

3. high: non-bypassable defense mechamisms

SQLi Labs

SQLi Labs is a platform for testing different SQL In-
jections. It covers GET, POST and HTTP header in-
jections Audi, 2012b. The developer of the SQLi-Labs
project also created video tutorials explaining the in-
dividual SQL Injections Audi, 2012a.

22.2 Virtual Machines

This section outlines the structure and deployment of
the VMs. Table 4 gives an overview on the virtual ma-
chines in the lab. For an overview of the virtual net-
work, see figure 21.

Note: The WAFs in the test environment are running
the standard configuration. The only exception is the
modification of the ModSecurity and Comodo WAF’s
configuration to enable blocking malicious requests.

Client VM The Client VM is used to run WAFNinja.
Necessary software is already installed. The op-
erating system is Kali Linux, a Linux Penetration

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

920

Name (O 1) Software
Client Kali Linux 2.0 TBD
NoWAF Debian 8.1 Apache 2.4.10, PHP 5.6.9, No WAF
CWAF Debian 8.1 Apache 2.4.10, PHP 5.6.9, ModSecurity 2.8.0-3
ModSecurity Debian 8.1 Apache 2.4.10, PHP 5.6.9, ModSecurity 2.8.0-3
WebKnight Windows 7 | 1IS7.5, PHP 5.6.0, AQTRONIX WebKnight 4.1

Table 4: Virtual Machines in the lab

Testing distribution which includes several tools
commonly used in a penetration test Offensive
Security, 2015.

NoWAF VM This VM is used to explore the previ-
ously introduced vulnerable applications in or-
der to get an overview of these and identify their
vulnerabilities.

ModSecurity VM The ModSecurity VM is deployed
wtih the Core Rule Set of OWASP OWASP, 2015c,
which is known to be very restrictive.

CWAF VM The Comodo Web Application Firewall
(CWAPF) is a free WAF running on Apache and
Linux based web servers. This WAF deploys
ModSecurity with a custom rule set Comodo,
2015.

WebKnight VM This VM includes the AQTRONIX
WebKnight WAF, which is installed as a module
in Windows IIS 7.5 AQTRONIX, 2014.

23 Results

This section describes how the three WAFs in the lab
have been attacked with WAFNinja and what results
have been found. The attack was focused on by-
passing the WAF’s rule set as described in phase four
of the » Approach to bypass a WAF« chapter and was
performed without prior knowledge of the rule set.
These tests have been conducted within a time frame
of four hours.

Every paragraph covers the results of attacking the
particular WAF and consists of these three parts:

1. XSS Brute force: Result of WAFNinjas’s bypass
function which brute forces the WAF for a work-
ing XSS.

2. SQL Fuzz: Result of WAFNinja’s fuzz function
which helps to find a SQL Injection vulnerability.

3. XSS Fuzz: Result of WAFNinja’s fuzz function
which helps to find a XSS vulnerability.

There is no fourth part for brute forcing the WAF for
a SQL Injection because currently there are only a few
SQL payloads in the WAFNinja database.

A short summary of the findings is given at the end of
every part.

23.1 CWAF

The custom rule set of Comodo for ModSecurity has
shown to be more intelligent and not that restrict-
ive as the ModSecurity’s Core Rule Set. For example
requests containing single and double quotes are al-
lowed if they are not combined with other keywords
used for SQL Injections, whereas ModSecurity’s Core
Rule Set would have blocked these.

XSS Brute force attack

WAFNIinja reported six working payloads and nine
payloads which passed the WAF, but were not found
in the response. The payloads that were not blocked
used the bypass technique of including a link to an
external JavaScript file instead of embedding JavaS-
cript in the request. The XSS was not executed in the
Client VM’s browser and adjustments to the payload
have also not lead to an execution of the code. The
remaining payloads in WAFNinja’s result, that were
reported not to be blocked, were false positives. This
is probably because these payloads contain unusual
characters. Further investigation is required to elim-
inate these false positives.

Summary: No bypass has been found with this
method.

SQL Fuzz

1. The result of the SQL fuzz attack revealed that
‘union’ and “select’ that were sent individually
were allowed by the WAF, while different com-
binations of these two words have been blocked,
except for these two strings:

union/*+*/select
union/*x/all/**/select

These payloads use the comment sign ’/**/’ as a
substitution for the whitespace.

2. On the attempt to exploit the SQL Injection vul-
nerability in DVWA, the following payload was
blocked:

0' union/*«*/select 1,2

3. To identify which character made the WAF block
this input, individual characters were removed.
After removing the single quote (') the payload
was not blocked anymore:

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

921

192.168.88.100
Client VM

192.168.88.101 - NoWAF VM 192.168.88.102 - CWAF VM

i

Apache 2.4
Comodo WAF

Apache 2.4

192.168.88.103 - ModSecurity VM

192.168.88.104 - WebKnight VM

ModSecurity

“uft

Apache 2.4

AQTRONIX
WebKnight

Figure 21: The lab network

0 union/*x/select 1,2

4. Using a single quote is necessary to exploit the

DVWA SQL Injection vulnerability. Therefore the
next attempt was to exploit »Less-2« of the SQLIi-
Labs as the parameter is vulnerable to integer
based SQL Injection. The first test showed that
the following SQL Injection was successful:

http://192.168.88.102/sgli-labs/
Less—2/?1id=0

union/**/select 1,2,3 #

. The next step was to find out what damage this

bypass can do. The result of WAFNinja revealed

that the following two SQL functions were not
blocked:

version ()
@@datadir

. The following payload:
http://192.168.88.102/sgli-labs/
Less—2/7?id=0union/*x/

select 1,version(),Q@Rdatadir #

lead to the disclosure of the database version and
directory as seen in figure 22.
. The attempt to use the keyword "from’ failed

and therefore no further information could be re-
trieved.

XSS Fuzz

. The result of the XSS fuzzing attack revealed that

the for XSS commonly used <script> tag was
blocked, but not the following strings:

test

<bgsound src=>

. The string

was blocked.

. The same payload with a removed whitespace

between the 'x” and 'onerror’ was not blocked:

. The WAFNinja showed that the prompt function

was not blocked, which lead to the following
payload

. This payload was not processed correctly.

Adding whitespace characters like "%0A’ or
"%0B” or a Nullbyte "%00” lead to a blocked re-
quest:

Summary: A SQL Bypass was found, which lead to

the disclosure of sensitive information.

Summary: The tested payloads were blocked because
of a single character. Further testing may lead to a

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

922

€ 192.168.88.102

a wBa 4+ A&

[E Most Visited v “Offensive Security '\\Kali Linux '\\Kali Docs \Kati Tools !!Exploit-DB

Welcome
Your Login n.
Your Passwc

3-0+deb8ul
lib/mysql/

SERIES-2

Figure 22: The database version and directory

bypass.

23.2 ModSecurity

The ModSecurity WAF with the OWASP Core Rule
Set was expectedly highly restrictive. It can be as-
sumed that most organizations deactivate several
policies before enabling the blocking mode. This test
was used on the default configuration with all policies
activated.

XSS Brute force attack

The ModSecurity WAF blocked every payload of the
brute force attack.

Summary: No bypass has been found with this
method.

SQL Fuzz

¢ The result of the SQL fuzzing attack revealed that
the following combination of union select was
not blocked

uni%$0bon+se%0blect

¢ The following input was not blocked by the WAEF,
but was not executed by the back end either:

http://192.168.88.103/sqli-labs/

Less—2/?1id=1+uni%0Bon+se%0Blect+1,2,3

This payload can be tested with other back end
environments to observe wether it is processed.

Summary: A payload was found that passed the
WAEF, but which was not executed by the back end.

XSS Fuzz

The result of the XSS fuzzing attack did not find suffi-
cient keywords to craft a XSS payload.

Summary: No bypass has been found with this
method.

23.3 WebKnight

The AQTRONIX WebKnight WAF was the most vul-
nerable WAF of the three WAFs. Its rule set is sim-
pler than the other WAFs’ rule sets. This could be ob-
served because it blocked the names of event hand-
ler and not the schema that has to be followed in or-
der to utilize event handler. If a new event handler is
published, an application, defended by WebKnight, is
prone to an exploit that uses this new event handler,
until a patch is developed.

XSS Brute force attack

The WebKnight WAF blocked every payload of the
brute force attack.

Summary: No bypass has been found with this
method.

SQL Fuzz

1. The result of the SQL fuzz attack revealed that
the following fuzz was not blocked:

uNion (sElect)

This payload contains parentheses to substitute
the whitespace.

2. The following payload was blocked attempt-
ing to exploit the SQL Injection vulnerability in
DVWA:

0' union(select 1,2)

3. To identify which character made the WAF block
this input, individual characters were removed.
After removing the single quote (') the payload
was not blocked anymore:

0 union(select 1,2)

4. Using a single quote is necessary to exploit the
DVWA SQL Injection vulnerability. Therefore,
the next attempt was to exploit »Less-2« of the
SQLi-Labs as the parameter is vulnerable to in-

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

923

teger based SQL Injection. The first test showed
that the following SQL Injection was successful:

http://192.168.88.102/sgli-labs/
Less—2/7?id=0
union (select 1,2,3)

5. The next step was to find out what damage
this bypass can do. The result of WAFNinja re-
vealed that the following SQL functions were not
blocked:

@@version
version ()
user ()
@R@hostname
@Q@datadir

6. The WAFNinja’s result relating the ‘@@version’
function was a false positive. The remaining four

functions worked as seen in figure 23 and figure
24.

7. The next step was to try to retrieve data from a
table. The following payload was blocked

http://192.168.88.102/sgli-labs/
Less—2/7?21d=0
union (select 1,2,3 from security)

8. The next idea was to try the same technique with
the parentheses used for 'union select’ for the
from part of the query. The following payload by-
passed the WAF and resulted in the output seen
in figure 25

http://192.168.88.102/sgli-labs/
Less—2/?1d=0

union (select 1,2,3 from(security))
The error revealed that there is no table called ’se-
curity’.

9. The next step was to find the name of the data-
base table. One technique is to enumerate com-
mon table names. The first attempt was to try
‘user’ which failed. The second attempt with
"users’ as table name worked as seen in figure 26.

10. The final step was to find the column names. The
first attempt with the column names "username’
and ‘password’ worked as seen in figure 27. The
final payload was

http://192.168.88.102/sgli-labs/
Less—-2/?1d=0

union (select 1,username,password
from(users))

Furthermore another payload was found which can
exploit a log in function similar to the one described
in section 6.1:

abc' or 123<234 #

Summary: The SQL Injection was successful and
WebKnight was bypassed. This bypass led to the dis-

closure of sensitive system information and personal
user data.

XSS Fuzz

1. The result of the XSS fuzzing attack revealed, that
the following strings are not blocked:
test

<bgsound src=>

2. The next test was to add a JavaScript event hand-
ler:

This payload was blocked

3. WAFNinja’s output showed that the WAF
blocked most event handler. Those that were not
blocked did not work.

4. A documentation about JavaScript event hand-
ler showed that the ‘onmousewheel” event was
deprecated. The replacement was the ‘'onwheel’
event. The following payload was not blocked:

5. The next step was to test the following payload
locally:

This event handler is triggered when the mouse
wheel is trigger while the mouser is over the im-
age element.

6. The same payload was blocked by the WAF. Ana-
lyzing WAFNinja’s output showed that “alert(1)’
was blocked, but ‘prompt(1)’ not. The following
payload resulted in an exploit:

Note: The mouse wheel does not work in the Cli-
ent VM, thus this payload should be tested on an-
other machine.

Summary: A XSS bypass has been found because the
WAF’s rule set did not contain a new event hand-
ler.

24 Conclusion and Outlook

This thesis was focused on the matter of bypassing
WAFs during penetration tests.

Public bypasses have been gathered, explained and
categorized. A systematical and practicable approach
for bypassing a WAF, which can be used in penetra-
tion tests, is given. Furthermore, a tool was developed
which facilitates this approach. The outcomes of this

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 924

€ 92.168.88.104 v G ¥ ascript event handler G4 B 3 & =

[EMost Visited ¥ ﬂOffensive Security ~\N.Kali Linux ~\N.Kali Docs '\KaliTools !!ExptmthB

Welcome
our Login nam
Your Password:C:\ProgramData\MySQL\M). Server 5.6\Data\

Figure 23: Disclosure of the host name and database directory

€ 9 |2192168.88.104 v | G¥ascripteventhandler® ¥ B & @& =

Must Visited™ “Offenswe Security ~\\,Kal\ Linux ~\\Kall Docs ~\\,Kall Tools !!Explclt—DB

Welcome
Your Login name:5.6.26-log
Your P rord:root@localhost

SERIES-2

Figure 24: Disclosure of the database version and user

€ ©192.168.88.104 v | Gvascripteventhandler@ ¢ & & @& =

[E Most Visited v “Offenswe Security ~'\\.Kali Linux '\\,Kau Docs '\\,Kau Tools !!ExptowthB

Welcome

Figure 25: Error from the database

€ 192.168.88.104 v G v ascript event handler ©4 wBa & & =

[Most Visited ™ “Offensive Security ~‘Q,Kali Linux '\Kau Docs '\Kau Tools !!Exploit-DB

Welcome
Your Login name::
Your N OT

Figure 26: Table "users’ exists as the query is processed

tool have significantly contributed to finding several The results of this thesis can lead to a more accur-
bypasses. ate outcome when performing a penetration test. The

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

925

€ #©192168.88.104

v

G v ascript event handler @ wBa ¥ @&

[Most Visited v ﬂOffensive Security ~E,Kali Linux '\Kau Docs \Kati Tools !!Exploit-DB

Welcome
Your Login name:Dumb
Your Password:Dumb

Figure 27: Disclosure of username and password

contents can also help WAF vendors and administrat-
ors to understand the functionality of bypass tech-
niques in order to prevent them and ultimately to in-
crease their WAF's security level.

Future objectives regarding the tool are:

¢ extending its functionality by adding more types
of vulnerabilities and including other bypass
methods.

* improving the functionality in order to eliminate
false positives and false negatives.

¢ creating a GUL

It is intended to publish this tool on a collaboration
platform like GitHub. Thereby the tool will be avail-
able to a great number of security experts who can use
it for penetration tests and also add functionality to it.
Also, the presented approach will be published as an
article on the OWASP web site and will be presented
on an OWASP regular’s table.

The bypasses found during this bachelor thesis will be
reported to the particular WAF vendors. After these
bypasses have been patched, they will be published
in order to raise the awareness of WAF security.

Overall it can be said, that WAFs mitigate vulnerabil-
ities and make their exploitation more difficult. This
thesis provides evidence that unknown bypasses can
be found in a short amount of time. Organizations
have to understand that WAFs may forfeit some at-
tacks, but do not guarantee that no breach will hap-
pen.

25 About the Author

Khalil Bijjou is an enthusiastic ethical hacker, bug
hunter and penetration tester for the german IT se-
curity consulting firm EUROSEC. He performs secur-
ity assessments for major companies especially in the
field of web, mobile and SAP security. Khalil reached
the 2nd place in the German Post IT Security Cup 2015
and was a speaker at PHDays, Moscow and DefCamp
Bucharest.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

926

References

Abdul Rafay Baloch. (2013). Modern web application
firewalls fingerprinting and bypassing xss fil-
ters. Retrieved September 12, 2015, from https:
/ / dl.packetstormsecurity.net/ papers/bypass/
WAF_Bypassing By_RAFAYBALOCH.pdf

Acunetix. (2012). Windows short (8.3) filenames - a se-
curity nightmare? Retrieved September 1, 2015,
from http:/ /www.acunetix.com/blog/articles/
windows- short- 8- 3- filenames- web- security -
problem/

Apache. (2013). Mod_proxy module. Retrieved
September 16, 2015, from http:/ /httpd.apache.
org / docs /2.0 / mod / mod _ proxy. html #
forwardreverse

AQTRONIX. (2014). Aqtronix webknight - open
source web application firewall (waf) for iis. Re-
trieved September 17, 2015, from http:/ / csrc.
nist . gov / publications / nistpubs / 800 - 123 /
SP800-123.pdf

Audi. (2012a). Security auditor videos. Retrieved
September 21, 2015, from https : / / www .
youtube.com/user/dhakkan3/videos

Audi. (2012b). Sqli-labs github. Retrieved September
21, 2015, from https:/ / github.com / Audi-1/
sqli-labs

Beechey, J. (2009). Web application firewalls: Defense
in depth for your web infrastructure. Retrieved
August 16, 2015, from https:/ /www.sans.edu/
student-files/ projects /200904 _01.doc

Bijjou, K. (2019). Web application firewall bypassing:
An approach for penetration testers. Magdebur-
ger Journal zur Sicherheitsforschung, 17, 900-926.
Retrieved April 5, 2019, from http:/ / www.
sicherheitsforschung-magdeburg.de /uploads/
journal/M]JS_061_Bijjou_Bypassing.pdf

Carettoni, L. & Di Paola, S. (2009). Http para-
meter pollution. Retrieved August 24, 2015,
from https:/ / www.owasp.org /images /b /
ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

Cisco. (2013). Cisco ace web application firewall user
guide (software version 6.0) - developing rules
and signatures. Retrieved September 16, 2015,
from http:/ /www.cisco.com/c/en/us/td/
docs / app _ntwk _services / data_center_app_
services/ace_waf/v60/user/guide/acewafug/
waf_ug_extendingrulessigs.html

Citrix. (2013). Netscaler app firewall. Retrieved
September 16, 2015, from http:/ / www.ndm.
net/citrix/NetScaler /netscaler-app-firewall

Codewatch. (2014). Bypass waf: Burp plugin to by-
pass some waf devices. Retrieved September 3,
2015, from https:/ /www.codewatch.org/blog/
?p=408

Comodo. (2015). Free modsecurity rules from co-
modo. Retrieved September 17, 2015, from
https:/ /waf.comodo.com/

Cory Janssen. (2013). What is security through ob-
scurity (sto)? definition from techopedia. Re-
trieved August 11, 2015, from http: / / www.

techopedia . com / definition / 21985 / security -
through-obscurity-sto

cyberoperations. (2012). Iis on windows 2008
r2. Retrieved September 1, 2015, from https:
/ / cyberoperations . wordpress . com / class -
archives /2012-class / 07-iis-on-windows-2008-
12/

D’Hoinne, J., Hils, A. & Young, G. (2015). Magic quad-
rant for web application firewalls. Retrieved
August 5, 2015, from http:/ /www.gartner.com/
technology / reprints.do?id =1-2JHK9Z5 & ct=
150715&st=sb&elq=

Drops. (2015). Bypass waf cookbook. Retrieved
September 3, 2015, from http : / / translate .
wooyun . io / 2015 / 09 / 01 / Bypass - WAF -
Cookbook.html

edgescan. (2014). Vulnerability statistics report 2014.
Retrieved August 24, 2015, from http:/ / www.
becriskadvisory. com / wp - content / uploads /
Edgescan-Stats-Report.pdf

Foreman, P. (2010). Vulnerability management. Boca
Raton, Fla.: CRC Press Auerbach.

Margaret Rouse. (2011). What is pen test (penetra-
tion testing)? Retrieved August 5, 2015, from
http:/ / searchsoftwarequality. techtarget.com /
definition/penetration-testing

Mazin Ahmed. (2015). Evading all web-application
firewall xss filters. Retrieved September 12,
2015, from http:/ /mazinahmed.net/uploads /
Evading % 20All % 20Web - Application %
20Firewalls%20XS5%20Filters.pdf

ModSecurity. (2015). Modsecurity: Open source web
application firewall. Retrieved September 17,
2015, from https:/ /www.modsecurity.org/

NerdsHeaven. (2014). Browser useragent — »dot-
defender blocked your request«. Retrieved
September 1, 2015, from http : / / www .
nerdsheaven.de /magazin / artikel / tipps-und-
tricks / useragent - und - dotdefender - blocked -
your-request-888/

Offensive Security. (2015). Kali linux penetration test-
ing and ethical hacking linux distribution. Re-
trieved September 17, 2015, from https:/ /www.
kali.org/

OWASP. (2013). Top 10 2013. Retrieved August 4,
2015, from https:/ / www.owasp.org / index.
php/Top_10_2013-Top_10

OWASP. (2014). Web application penetration test-
ing. Retrieved September 17, 2015, from https:
/ / www . owasp . org / index . php / Web _
Application_Penetration_Testing

OWASP. (2015a). Best practices: Use of web ap-
plication firewalls. Retrieved August 12, 2015,
from https:/ / www.owasp.org /index.php /
Category : OWASP _ Best _ Practices: _Use _of _
Web_Application_Firewalls

OWASP. (2015b). Dom based xss. Retrieved Septem-
ber 21, 2015, from https:/ / www.owasp.org /
index.php/DOM_Based_XSS

OWASP. (2015¢c). Owasp modsecurity core rule set
project. Retrieved August 12, 2015, from https:
/ / www.owasp .org / index. php / Category :

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

https://dl.packetstormsecurity.net/papers/bypass/WAF_Bypassing_By_RAFAYBALOCH.pdf
https://dl.packetstormsecurity.net/papers/bypass/WAF_Bypassing_By_RAFAYBALOCH.pdf
https://dl.packetstormsecurity.net/papers/bypass/WAF_Bypassing_By_RAFAYBALOCH.pdf
http://www.acunetix.com/blog/articles/windows-short-8-3-filenames-web-security-problem/
http://www.acunetix.com/blog/articles/windows-short-8-3-filenames-web-security-problem/
http://www.acunetix.com/blog/articles/windows-short-8-3-filenames-web-security-problem/
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
http://csrc.nist.gov/publications/nistpubs/800-123/SP800-123.pdf
http://csrc.nist.gov/publications/nistpubs/800-123/SP800-123.pdf
http://csrc.nist.gov/publications/nistpubs/800-123/SP800-123.pdf
https://www.youtube.com/user/dhakkan3/videos
https://www.youtube.com/user/dhakkan3/videos
https://github.com/Audi-1/sqli-labs
https://github.com/Audi-1/sqli-labs
https://www.sans.edu/student-files/projects/200904_01.doc
https://www.sans.edu/student-files/projects/200904_01.doc
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_061_Bijjou_Bypassing.pdf
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/data_center_app_services/ace_waf/v60/user/guide/acewafug/waf_ug_extendingrulessigs.html
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/data_center_app_services/ace_waf/v60/user/guide/acewafug/waf_ug_extendingrulessigs.html
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/data_center_app_services/ace_waf/v60/user/guide/acewafug/waf_ug_extendingrulessigs.html
http://www.cisco.com/c/en/us/td/docs/app_ntwk_services/data_center_app_services/ace_waf/v60/user/guide/acewafug/waf_ug_extendingrulessigs.html
http://www.ndm.net/citrix/NetScaler/netscaler-app-firewall
http://www.ndm.net/citrix/NetScaler/netscaler-app-firewall
https://www.codewatch.org/blog/?p=408
https://www.codewatch.org/blog/?p=408
https://waf.comodo.com/
http://www.techopedia.com/definition/21985/security-through-obscurity-sto
http://www.techopedia.com/definition/21985/security-through-obscurity-sto
http://www.techopedia.com/definition/21985/security-through-obscurity-sto
https://cyberoperations.wordpress.com/class-archives/2012-class/07-iis-on-windows-2008-r2/
https://cyberoperations.wordpress.com/class-archives/2012-class/07-iis-on-windows-2008-r2/
https://cyberoperations.wordpress.com/class-archives/2012-class/07-iis-on-windows-2008-r2/
https://cyberoperations.wordpress.com/class-archives/2012-class/07-iis-on-windows-2008-r2/
http://www.gartner.com/technology/reprints.do?id=1-2JHK9Z5&ct=150715&st=sb&elq=
http://www.gartner.com/technology/reprints.do?id=1-2JHK9Z5&ct=150715&st=sb&elq=
http://www.gartner.com/technology/reprints.do?id=1-2JHK9Z5&ct=150715&st=sb&elq=
http://translate.wooyun.io/2015/09/01/Bypass-WAF-Cookbook.html
http://translate.wooyun.io/2015/09/01/Bypass-WAF-Cookbook.html
http://translate.wooyun.io/2015/09/01/Bypass-WAF-Cookbook.html
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
http://searchsoftwarequality.techtarget.com/definition/penetration-testing
http://searchsoftwarequality.techtarget.com/definition/penetration-testing
http://mazinahmed.net/uploads/Evading%20All%20Web-Application%20Firewalls%20XSS%20Filters.pdf
http://mazinahmed.net/uploads/Evading%20All%20Web-Application%20Firewalls%20XSS%20Filters.pdf
http://mazinahmed.net/uploads/Evading%20All%20Web-Application%20Firewalls%20XSS%20Filters.pdf
https://www.modsecurity.org/
http://www.nerdsheaven.de/magazin/artikel/tipps-und-tricks/useragent-und-dotdefender-blocked-your-request-888/
http://www.nerdsheaven.de/magazin/artikel/tipps-und-tricks/useragent-und-dotdefender-blocked-your-request-888/
http://www.nerdsheaven.de/magazin/artikel/tipps-und-tricks/useragent-und-dotdefender-blocked-your-request-888/
http://www.nerdsheaven.de/magazin/artikel/tipps-und-tricks/useragent-und-dotdefender-blocked-your-request-888/
https://www.kali.org/
https://www.kali.org/
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Web_Application_Penetration_Testing
https://www.owasp.org/index.php/Web_Application_Penetration_Testing
https://www.owasp.org/index.php/Web_Application_Penetration_Testing
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 927

OWASP_ModSecurity_Core_Rule_Set_Project#
tab=FAQs

OWASP Top Ten Project. (2015). Retrieved August
24, 2015, from https:/ /www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project

Pubal, J. (2015). Web application firewalls: Enter-
prise techniques. Retrieved August 13, 2015,
from https:/ / www.sans.org / reading-room /
whitepapers / application / web - application -
firewalls-35817

PwC. (2014). Key findings from the global state of
information security® survey 2015.

RandomStorm. (2015a). Retrieved September
17, 2015, from https : / / github . com /
RandomStorm / DVWA / blob / master /
vulnerabilities /xss_s/source/low.php

RandomStorm. (2015b). Dvwa reflected xss source
code. Retrieved September 17, 2015, from https:
/ /raw.githubusercontent.com/RandomStorm /
DVWA /master /vulnerabilities / xss_r /source /
low.php

RandomStorm. (2015¢). Dvwa stored xss source code.
Retrieved September 17, 2015, from https: / /
raw . githubusercontent. com / RandomStorm /
DVWA /master /vulnerabilities / xss_r/source /
low.php

Ristic, I. (2010). Modsecurity handbook: [the complete
guide to the popular open source web application fire-
wall]. s.1.: Feisty Duck.

Ristic, I. (2012a). Ironbee waf research project. Re-
trieved August 29, 2015, from https:/ / github.
com/ironbee/waf-research

Ristic, I. (2012b). Protocol-level evasion of web ap-
plication firewalls. Retrieved August 8, 2015,
from https : / / community . qualys . com /
servlet / JiveServlet / download / 38 - 10665 /
Protocol - Level % 20Evasion % 20of % 20Web %
20Application % 20Firewalls % 20v1.1 % 20(18 %
20July%202012).pdf

Scarfone, K. A., Jansen, W. & Tracy, M. (2008). Guide to
general server security. doi:10.6028 /NIST.SP.800-
123

Scarfone, K. A., Souppaya, M. P, Cody, A. &
Orebaugh, A. D. (2008). Technical guide to in-
formation security testing and assessment. doi:10.
6028 /NIST.SP.800-115

Technologies, P. (2013). Web application vulnerab-
ility statistics. Retrieved August 24, 2015, from
http:/ / www.ptsecurity.com / upload / ptcom /
WEBAPPSTATS_WP _A4.ENG.0038.DEC.21.
2014.pdf

The Wall Street Journal. (2014). Global security spend-
ing to grow 7.9% in 2014. Retrieved August 5,
2015, from http:/ /blogs.wsj.com/cio/2014/08/
22 / global-security-spending- to- grow-7-9-in-
2014-gartner-says/

Zero Science Lab. (2013). Cloudflare vs incapsula
vs modsecurity. Retrieved September 17, 2015,
from http:/ / de.slideshare.net / zeroscience /
cloudflare-vs-incapsula-vs-modsecurity

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project#tab=FAQs
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/reading-room/whitepapers/application/web-application-firewalls-35817
https://www.sans.org/reading-room/whitepapers/application/web-application-firewalls-35817
https://www.sans.org/reading-room/whitepapers/application/web-application-firewalls-35817
https://github.com/RandomStorm/DVWA/blob/master/vulnerabilities/xss_s/source/low.php
https://github.com/RandomStorm/DVWA/blob/master/vulnerabilities/xss_s/source/low.php
https://github.com/RandomStorm/DVWA/blob/master/vulnerabilities/xss_s/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://raw.githubusercontent.com/RandomStorm/DVWA/master/vulnerabilities/xss_r/source/low.php
https://github.com/ironbee/waf-research
https://github.com/ironbee/waf-research
https://community.qualys.com/servlet/JiveServlet/download/38-10665/Protocol-Level%20Evasion%20of%20Web%20Application%20Firewalls%20v1.1%20(18%20July%202012).pdf
https://community.qualys.com/servlet/JiveServlet/download/38-10665/Protocol-Level%20Evasion%20of%20Web%20Application%20Firewalls%20v1.1%20(18%20July%202012).pdf
https://community.qualys.com/servlet/JiveServlet/download/38-10665/Protocol-Level%20Evasion%20of%20Web%20Application%20Firewalls%20v1.1%20(18%20July%202012).pdf
https://community.qualys.com/servlet/JiveServlet/download/38-10665/Protocol-Level%20Evasion%20of%20Web%20Application%20Firewalls%20v1.1%20(18%20July%202012).pdf
https://community.qualys.com/servlet/JiveServlet/download/38-10665/Protocol-Level%20Evasion%20of%20Web%20Application%20Firewalls%20v1.1%20(18%20July%202012).pdf
https://dx.doi.org/10.6028/NIST.SP.800-123
https://dx.doi.org/10.6028/NIST.SP.800-123
https://dx.doi.org/10.6028/NIST.SP.800-115
https://dx.doi.org/10.6028/NIST.SP.800-115
http://www.ptsecurity.com/upload/ptcom/WEBAPPSTATS_WP_A4.ENG.0038.DEC.21.2014.pdf
http://www.ptsecurity.com/upload/ptcom/WEBAPPSTATS_WP_A4.ENG.0038.DEC.21.2014.pdf
http://www.ptsecurity.com/upload/ptcom/WEBAPPSTATS_WP_A4.ENG.0038.DEC.21.2014.pdf
http://blogs.wsj.com/cio/2014/08/22/global-security-spending-to-grow-7-9-in-2014-gartner-says/
http://blogs.wsj.com/cio/2014/08/22/global-security-spending-to-grow-7-9-in-2014-gartner-says/
http://blogs.wsj.com/cio/2014/08/22/global-security-spending-to-grow-7-9-in-2014-gartner-says/
http://de.slideshare.net/zeroscience/cloudflare-vs-incapsula-vs-modsecurity
http://de.slideshare.net/zeroscience/cloudflare-vs-incapsula-vs-modsecurity
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

	1 Introduction
	2 Motivation and Background
	3 Scope
	4 Outline
	5 Theoretical framework
	6 Vulnerabilities in Web Applications
	6.1 SQL Injection
	6.2 Cross-Site Scripting (XSS)

	7 Web Application Firewall
	7.1 Benefits
	7.2 WAF Products
	7.2.1 Commercial
	7.2.2 Open source

	7.3 Deployment Options
	7.3.1 Reverse Proxy
	7.3.2 Bridge Mode
	7.3.3 Monitoring Mode
	7.3.4 Embedded Mode
	7.3.5 Cloud Mode

	7.4 Functionality
	7.4.1 Pre-processor
	7.4.2 Normalization functions
	7.4.3 Security Models
	7.4.4 Input Sanitization

	7.5 Additional Features
	7.6 Summary

	8 Bypassing Methods and Techniques
	9 Pre-processor exploitation
	9.1 X-* Headers
	9.2 Bypassing parameter verification
	9.3 Malformed HTTP Method
	9.4 Overloading the WAF
	9.5 Injection via cookies

	10 Impedance Mismatch
	10.1 HTTP Parameter Pollution
	10.2 HTTP Parameter Fragmentation
	10.3 Double URL Encoding
	10.4 Content-Type Obfuscation

	11 Rule Set Bypassing
	11.1 Brute Force
	11.2 Reverse-engineering

	12 Approach to bypass a WAF
	13 Phase 0: Identify vulnerabilities without a WAF
	14 Phase 1: Reconnaissance
	15 Phase 2: Attacking the pre-processor
	16 Phase 3: Attempting an impedance mismatch
	17 Phase 4: Bypassing the rule set
	18 Phase 5: Identifying miscellaneous vulnerabilities
	19 Phase 6: Post Assessment
	20 Bypassing WAFs with WAFNinja
	21 WAFNinja
	22 Lab environment
	22.1 Vulnerable Applications
	22.2 Virtual Machines

	23 Results
	23.1 CWAF
	23.2 ModSecurity
	23.3 WebKnight

	24 Conclusion and Outlook
	25 About the Author

