Magdeburger Journal zur Sicherheitsforschung

Gegriindet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher
Erschienen im Magdeburger Institut fiir Sicherheitsforschung
http:/ /www.sicherheitsforschung-magdeburg.de/publikationen /journal.html

This article appears in the special edition »In Depth Security — Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

XFLTReaT

Unified Tunneling

Balazs Bucsay

This paper aims to recognize the similarities between existing tunneling solutions and gives advice on
possible framework implementation. The reference implementation can be found on Github under the name
of XFLTReaT. With this framework it is possible to use only one tunneling program to use different transport
protocols to tunnel data. This approach can help on both sides of the IT-security industry to implement new
attack and defense scenarios.

Keywords: Tunnel, Tunneling, Transport Protocol

Citation: Bucsay, B. (2019). Xfltreat: Unified tunneling. Magdeburger Journal zur Sicherheitsforschung, 17, 927—
937. Retrieved May 11, 2019, from http:/ /www.sicherheitsforschung-magdeburg.de /uploads/journal /MJS_
062_bucsay_XFLTReaT.pdf


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_062_bucsay_XFLTReaT.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_062_bucsay_XFLTReaT.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

928

Introduction

Tunnels and VPNs have been with us for a long time;
these solutions are used in our daily life, sometimes
even without our knowledge. Around 2000, the Uni-
versal TUN-TAP device driver was implemented in
different Unices (Linux (Krasnyansky, Yevmenkin &
Thiel, 2018), FreeBSD, Solaris) that made it easier to
create tunnels and use them as transport channels
between endpoints. These drivers helped developers
to create programs that can be paired up with vir-
tual interfaces to handle packets that are going to or
coming from the kernel. No hardware had to be in-
stalled to emulate these kinds of interfaces and it be-
came easier to develop tunneling solutions.

One of the most famous open-source VPN is the
OpenVPN (OpenVPN Inc., 2018) that can utilize both
TUN and TAP drivers. This tool is widely known
and used by companies, professionals and end-users.
While OpenVPN only supports TCP and UDP as
transport protocols (and also has support for HTTP
proxies over HTTP CONNECT, which is essentially
just TCP with a little overhead at the connection
phase), there is no support for other protocols that are
lower or higher on the OSI layers.

A number of tools are already created for tunnel-
ing over other protocols that are situated on lower
or higher layers of the OSI model. For example, for
ICMP there are the icmptunnel (Kapil, 2018), icmptx
(Edi, Poder & Gil, 2018), Hans (Scholler, 2018), etc.
DNS that is located on the application layer tgat can
also be used for tunneling. Iodine (Ekman & An-
dersson, 2018) is one of the most famous tools that is
used to exploit this property of the protocol.

Any other protocol that has a payload section and is
capable to transport data from A to B can be used for
tunneling. This paper tries to fill the gap that has been
present in this field for many years by recognizing the
similarity between existing solutions and the need for
a universal implementation.

1 Tunneling

1.1 Tunneling basics

The easiest way to understand how tunnels work is
through Virtual Private Networks (VPNs) as they are
widely used nowadays. A number of reasons for why
they are widely used is listed below:

¢ Accessing the internal network of the company
when working remotely

¢ Hide the real IP address

- For journalists to communicate anonym-
ously

- Whistleblowers
— Torrent usage
- Etc.
* Bypass ISP related filtering (NetBIOS, SMTP,

website blacklisting)
® Bypass captive portals
- Airports, cafés
— Guest networks

All VPN solutions are composed of two things:

* VPN server/concentrator

* VPN client
To create a VPN connection, the following steps are
usually done:

¢ Connection created between the two endpoints
(client and server)

Authentication and key exchange

¢ Virtual interface setup on both sides with private
IP addresses

* Routing set up table setup on client
¢ Data exchange started

By taking these steps, the client creates a tunnel (or
bridge) between the server and the network behind it
(which can be a private network of a company or the
Internet itself) and all the traffic is sent to the server
over the tunnel.

Depending on the configuration, the routing can also
be set up to create a split tunnel. In case we are deal-
ing with a split tunnel configuration, only some routes
will be added to the routing table and only packets
addressed to these IP ranges will be sent to the server
over the tunnel while the default route stays the same.
Split tunnels are out of the scope of this paper.

The main difference between browsing the Internet
without a tunnel (Fig. 1) and going over a tunnel
(Fig. 2) is that if you use a tunnel all of our traffic
first goes to the server that forwards the packets to
the original destination; this means that the route of
the packets is changed.

If the VPN solution supports encryption, then all the
packets are encrypted between the clients and the
server gives an additional layer of security. As rout-
ing have changed by creating the tunnel and sending
everything over that, (in most of the cases) the overall
number of hops will increase, the latency will grow
and part of the route will be always the same (the
route until the packet reaches the VPN server). This
also means that the addressed destinations will only
see the VPN server’s IP address that forwarded the
packets from the client.

Advantages of the VPN solutions:

¢ Gives additional security by encrypting the
traffic

e Hides the real IP address

Disadvantages:

® Increased latency (for most of the times)
* Longer routes
* Reduced throughput (MTU)

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

929

Y

Tunnel endpoint Home gateway

VPN client

Yz

Tunnel endpoint
VPN server

Server full of
cat videos

Figure 1: No tunnel set up

Yz

Tunnel endpoint
VPN server

Tunnel endpoint Home gateway

VPN client

Yz

Server full of
cat videos

Figure 2: Tunnel built and in use

1.2 Tunneling 101

Strictly speaking about tunneling all the solutions are
the same. They choose a transport protocol that is cap-
able of transmitting data and connecting two endpo-
ints together. The only real difference is how the data
is handled and how the packets are encapsulated in
the transport protocol.

In modern operating systems, the drivers or modules
(TUN and TAP) are capable of setting up virtual in-
terfaces that can act as real interfaces. From the user
space there is no difference between a virtual and real
device, both can be configured in the same way.

When a tunneling program starts, it sets up a virtual
interface that acts as a network card and any packet
sent to this interface is handled by the program. Tun-
neling tools are responsible for encapsulating pack-
ets in a way that can be sent over the network to the
server. The server does the same in the reverse direc-
tion. When an encapsulated packet is received over
the network, it gets decapsulated and then sent to the
previously set up virtual interface.

If a protocol was designed to be capable of transmit-
ting data (there is a payload section in it), then it can
be used for tunneling. A number of examples for
such protocols are TCP, UDP, ICMP, DNS, HTTP, SMS
(GSM).

On networks where everything is filtered but ICMP
packets, ICMP tunneling is a great way to bypass

the restrictions and get unfiltered Internet access. All
packets have to be encapsulated in ICMP packets and
sent to the server. Figure 4 shows a UDP packet that
cannot be sent over the network because of the fire-
wall rules in place. However, if that packet is encap-
sulated in an ICMP packet as indicated on figure 5, it
could be sent to the other endpoint.

The server’s responsibility is to decapsulate the ori-
ginal packet from the transport protocol packet and
to write it to the tunnel interface. From that point, the
kernel will handle the forwarding and other necessary
things.

1.3 Maximum Transmission Unit

The Maximum Transmission Unit or MTU is the max-
imum size of a packet that can be transmitted over
the network. This value is usually assigned to an in-
terface as a property. If the packet size including the
IP header is over limit, then the kernel or the net-
work device is responsible for fragmenting the packet
to create smaller packets that are equal to the size
or smaller than the MTU. After fragmentation, the
packet is split into multiple chunks and sent over the
network. The kernel or the network device on the
recipients side is then responsible to reassemble the
original package. The default MTU on most network
devices and interfaces is set to 1500 bytes, so all the
packets have to fit into 1500 bytes including head-
ers.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 930

Figure 3: Tunneling simplified

IP header

Va ~
,I \\\
’ S

Figure 4: Original UDP packet

4
s
’

-~
~
~ -~
-
~

4
-
~
~
S

~

-~
-~
~
~~
I
~
~ 7
s

IP header

’
/ ~
’ RS

k4 ~
’ S

Figure 5: ICMP encapsulated UDP packet

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

931

From a tunneling perspective this is an important
property. Encapsulating packets introduces an over-
head by placing the original packet into another pay-
load section. As a result this increases the size of the
new packet. If the original packet was 1500 bytes long
and it gets encapsulated into a different packet, the
size will exceed the 1500 bytes limit. If this happens
it will either be fragmented into two packets or net-
work devices will reject it. The easiest way to solve
this problem is to decrease the MTU value of the local
interface to make sure that smaller packets will be
sent.

In certain cases there is a need to send encapsulated
packets in other encapsulated packets, or, let us say,
tunneling over a tunnel. By looking at the Matry-
oshka doll or Russian nesting doll (Fig. 6) it is easy
to understand how the MTU works. The MTU has to
be decreased each time the packet is encapsulated be-
cause of the overhead, otherwise it does not fit into
the other, bigger MTU size.

Let us see how the fragmentation works. The theoreti-
cal size limit of a UDP packet is 65535 bytes, but really
it is only 65507 bytes, because of the limitation im-
posed by the IPv4 protocol (the IP header is 20 bytes
and the UDP header is 8 bytes).

If a UDP packet has to be sent over the network and
is bigger than the MTU, then it has to be fragmented.
For example take a look at (Fig. 7) where the payload
is 2992 bytes long, with the UDP header it adds up
to 3000 bytes and the IP header would increase it by
20 bytes more. In total, the full package is 3020 bytes
long, which is obviously bigger than the default MTU,
which is 1500 bytes. For that reason this packet has
to be fragmented into 3 different packets. The first
will be 20 + 8 + 1472 = 1500 bytes; the second will
not need the UDP header since it is fragmented (20
+ 1480 = 1500 bytes) and the third will be 20 + 40 =
60 bytes long. In total 3060 bytes in 3 packets will be
transmitted over the network instead of one packet
that is 3020 bytes long.

1.4 TUN and TAP

Most modern operating systems support two differ-
ent types of virtual network devices, TUN and TAP;
both of them can be used to create one or more virtual
interfaces. These are only virtual, so any packet that
is sent to them will not go beyond the kernel. While
the TUN devices work at layer three or IP level in the
OSI reference model and only IP packets can be sent
to them, TAP devices work at layer two at the Ether-
net level. TAP devices can be used for bridging and
are usually used in virtualization systems. In case of
tunneling solutions the IP level or layer three is just
enough, so there is no need to build or amend Ether-
net frames and IP headers. If the IP forwarding is en-
abled in the operating system and the proper firewall
rules are set the entire low-level networking (for ex-
ample: fragmentation or packet readdressing for for-
warding) is gone, these are all handled by the device
or the kernel.

2 Framework

2.1 Problems with existing solutions

Several tunneling implementations can be found on
the Internet for multiple protocols. Although there
are some decent implementations that are still main-
tained, in great majority the solutions are not more
than a proof of concept or end of life codes.

Problems in general:

e EoL/PoC codes:

- If a bug is found it cannot be reported, since
there is no one who will fix it.

— Codes do not follow changes in the operat-
ing systems.

- In order to add new functionality the user
needs to touch the code.

¢ Different programming languages are used most
of the times:

- Lack of modularity, parts of the code cannot
be reused elsewhere.

— Lack of portability; the codes are running on
one operating system only.

® The configuration files totally differ from solu-
tion to solution:

— The user has to find out how and what to
modify.
¢ No documentations or how-tos.

* As many protocols as many solutions. Imple-
mentations have support for only one or two
transport protocols.

¢ Tools do not make it easy for the users to map
out the network weaknesses; lack of automation
in most of the tools.

These problems are very generic in the field of IT-
Security. Most security professionals are not coders,
therefore they are just creating proof of concepts to
show the world that their ideas could work. Unfor-
tunately, until this point there were no attempts to re-
form the field of tunneling. This paper aims to give
guidance and a reference implementation of a poten-
tial framework that can solve these problems.

2.2 Requirements for a framework

The framework that can solve the above mentioned
issues could be implemented by following these re-
quirements:
¢ Open-source
— Community work always produce great
tools, Linux and Metasploit framework are
just two great examples for this
- Being feature rich and having good ideas
implemented
¢ Easy to use and understand programming lan-
guage

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019) 932

Figure 6: Matryoshka doll, decreasing MTU

<+————— |Pv4 Datagrams ——»

IPv4 upP

Header | Header UDP Data

First Fragment
Total Length = 1500
UDP Length = 3000

Second Fragment
Total Length = 1500

Offset =0
MF = 1 -+— |P Payload (1480 bytes) ——»
IPv4
Header UDP Data
Offset = 185
MF =1
IPv4
Header UDP Data
Offset = 3704¢——»=
MF =0 IP Payload

(40 bytes)

Last Fragment
Total Length = 60

20 + 8 + 2992 = 3020 bytes

Figure 7: UDP fragmentation (Shichao, 2018)

— Script languages are usually easier to use
than compiled languages

— Automatic line indenting helps

- Widespread or hyped languages always
help on community development.

* Modularity

- Handling different modules for different
goals.

— Transport protocol modules have to imple-
ment the basic properties of the protocol and
how it handles the data.

- Authentication modules have to implement
different authentication methods to authen-
ticate clients.

- Encryption modules have to implement dif-
ferent encryption methods that can be used
to encrypt the data flow.

— The use of modules has to be possible in a
plug and play fashion. Only the configura-
tion file has to be modified to enable or to
use a module.

* Multi client support

— Clients have to be handled from the frame-
work, should not be handled from the trans-
port protocol modules, except a few cases
and methods.

— Authentication, encryption and module
specific user properties have to be stored
in the client object that is handled by the
framework

— The client object has to be extendable
® Object Oriented

— Possibly to use Object Oriented Program-
ming (OOP) for implementation

- Transport modules should be built upon
their parent protocols (e.g. SOCKS Proxy on
TCP or DNS on UDP)

® Check functionality

— All modules have to have a check function
that send a challenge or challenges to the
server to solve. If the challenge is solved,
the tunnel can be built.

— This functionality helps users to check
connectivity and makes low-level network
mapping unnecessary or at least less neces-
sary

¢ Ease of use and development

— User friendly

— It should be easy to develop plugins for it
e Multi operating system support

As mentioned earlier, this paper only gives recom-
mendations about how a potential framework can

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

933

be created and a reference implementation in Python
called XFLTReaT follows this paper, which can be ac-
cessed from these URLs:

¢ http://xfltreat.info/
¢ https://github.com/earthquake/XFLTReaT/

2.3 Interface

The framework have to create its own interface, it can
be either TUN or TAP. Since the majority of the In-
ternet protocols are based on IP, there is no real need
for TAP, although there could be cases where TAP is a
must.

By creating an interface the framework should use the
configuration to set the properties (IP address, net-
mask, MTU, etc.). There is no need to set up a new
interface for every module, one should be more than
enough. However, this means that all traffic directed
to the users will come from the interface and have to
be selected and directed to the right client. A packet
selector module should be created to handle this prob-
lem.

When a transport protocol module receives an encap-
sulated packet from the client or the server, it de-
capsulates it and writes on the interface. The kernel
will change the IP header along with other necessary
modifications. It either changes the destination IP ad-
dress to the client’s private address or the source ad-
dress to the server’s IP address. The modified packet
can then be sent to the original destination. If the
direction is client to server this is pretty straightfor-
ward, however, in the opposite direction it is a bit
harder. The only way to find out where the packet
should be sent to, is the private IP address in the IP
header. The framework on the server side must have
an internal database of the clients and all clients must
have a writeable pipe (or mailslot on Windows). This
pipe/mailslot will replace the tunnel interface from
client point of view when it comes to read.

Figure 8 clearly shows how the server side should op-
erate. The clients connect from the Internet directly
to the modules. Modules can be anything as far as
their framework support that transport protocol mod-
ule. If the client was using TCP tunneling, then all
data will be sent to the server over TCP (as indicated
by the yellow lines). Then the TCP module decapsu-
lates the packet, writes it to the Tunnel Interface (red
lines), which was set up when the framework started.
The kernel makes the necessary changes on the packet
and forwards it to the original destination. If there is
an answer from the original destination it will be sent
to the server, which then will be forwarded to the Tun-
nel Interface (green lines). The Tunnel Interface or the
kernel will amend the packet again and forward it to
the client.

This is where the Packet Selector comes in. It reads all
the incoming packets from the interface and tries to
match them to the private IPs from the internal client
database. If a match was found, then the packet will
be written on that client’s pipe (as indicated by the

green lines). The TCP module will look for a change
on that pipe, if that happens it reads the packet and
sends it back to the client (over the yellow line) after
encapsulation. From the module point of view the en-
tire packet selection appears to be transparent, it is
just the same as if it was reading from interface it-
self.

2.4 Routing

After the interface is properly configured, the client
must set up the routing. First, the original default
route has to be determined and saved, then this has
to be removed from the routing table (step 1). A new
default route should be added with the destination of
the server’s private address (step 2). This step en-
sures that all packets arrive at the virtual interface
first. One last rule has to be added that will allow
the communication with the frameworks server. This
rule should strictly set the destination as the IP of the
server (which can be an intermediate one in case of
DNS tunneling or proxies) and the gateway to the IP
that was the original default gateway (step 3).

When the client terminates the original routing table
has to be reverted. The default route has to be re-
placed (step 2) with the original default route (step 1)
and the second rule, which was added, has to be re-
moved as well (destination: framework’s IP, gateway:
original default gateway). No other modifications are
necessary, since this is not a split tunnel.

2.5 Multi client support

The framework has to serve multiple clients at the
same time. When a client connects to the server, the
framework has to create a client object that has to store
at least two properties, the public and private IP of
the client. Different modules can have different re-
quirements based on how they work, this needs to be
acknowledged and the client object has to be extend-
able because of this. The extendibility should be done
by inheritance, as this provides the best way to store
other properties and to be compatible with the frame-
work. If the transport protocol module requires differ-
ent attributes, then the client object has to be recreated
from a support file (more on that later).

The client object has to have different methods to get
the clients details, including the private and public IP
addresses as well as the writeable pipe (or mailslot
on Windows) that stores the packets coming from the
interface. Having these methods implemented, the
Packet Selector can handle the incoming traffic from
the server side and can forward it to the right client.

2.6 Transport Protocol Modules

These modules are the heart and soul of the frame-
work. The whole purpose of the framework is to
make the development of the transport protocol mod-
ules easier than it was previously. This can be done by

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://xfltreat.info/
https://github.com/earthquake/XFLTReaT/
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

934

Packet
Selector

Figure 8: Data flow

realizing that all the existing solutions are based on
the same principal and by finding the common points
that are not varying between protocols. If all of these
could be implemented in a framework and the mod-
ules could be just built up with these functions, then
only the differences have to be implemented.

Having said that, the transport protocol modules
should only implement how the data is sent and re-
ceived. This varies among protocols, because the en-
capsulating method always changes, sometimes it is
needed to set certain flags or to build up special head-
ers and so on.

If there are some requirements that the framework
cannot fulfill they have to be implemented into the
module or the framework has to be improved.

2.7 Support files

There should be some logical boundaries introduced
when coding the modules. When the transport pro-
tocol module needs to use some protocol related
implementations (for example ICMP header builder,
ICMP checksum, DNS query builder, etc.) they
should be placed into different, so called support files
(as they are supporting the module). The modules
should be clean, tidy, lightweight and well structured
without the parts that could be reused in other mod-
ules.

If more general functions are needed for the module
which are not present in the framework, those func-
tions should be moved to the core in order to be re-
usable in future modules.

2.8 Check Functionality

All transport protocol modules should have one or
more check functions implemented. The goal of this
functionality is to help users find out which com-
munication channel can be used for tunneling on
an unknown or even on a known network. This
avoids unnecessary manual low-level network map-
pings. Properly written check functions could replace
the need for tools like Wireshark (Combs, 2018) or
Nmap (Insecure.Com LLC, 2018) to save time.

The client has to send a challenge to the server. This

challenge does not have to be hard or cryptograph-
ically secure, the point is to see whether the server
can get this message or not. If the challenge reaches
the server, then it answers to the client with the solu-
tion. When the client receives a correct solution, we
can come to the following conclusions:

® There is a server on the other side that is using
the framework

e The communication channel works and a tunnel
can be created

2.9 Auto-tune

Auto-tune functions should be implemented in cer-
tain modules, for example DNS where different DNS
server implementations can behave differently. These
checks can be used for auto-tuning the tunnel or just
error debugging. A few examples that can be checked
in case of DNS:

* Rate limitation
* Maximum length of a query
¢ Maximum length of an answer

® Record type support (NULL, PRIVATE, TXT,
CNAME, MX, etc.)

* Encoding support (basel28, base91l, baset4,
base32)

2.10 Control and Data channels

The framework needs to be capable of using two dif-
ferent virtual channels, the data and control chan-
nels. These are communication channels over the ac-
tual tunnel between the client and the server. The
data channel is only used to transfer data between the
two endpoints, and the control channel is used to ex-
change control messages such as:

* Authentication related messages
¢ Key-exchange for encryption

¢ Check functionality

¢ Logoff message

¢ Keep-alive messages

¢ Error correction messages

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

935

* Congestion control

2.11 Module tree

There are many similarities between transport pro-
tocol modules, which should not be re-implemented
each time a new module is created. If object orien-
tated programming is used, then every new module
can inherit the methods and the properties from its
parent, therefore unnecessary code reuse can be cir-
cumvented. As an example, take a look at figure 9.

A generic module should have all the methods (pro-
totypes) and properties that will be used across the
modules. Because the stateful and stateless connec-
tions have to be handled in a different way, there must
be a split in the module tree there. These three mod-
ules will be referenced as skeleton modules in the fol-
lowing section as they give a skeleton for the rest of
the other modules. For stateful modules (like TCP
or HTTP) all common methods and properties have
to be implemented in the Stateful module. The State-
less module has to be created likewise. For example,
SOCKS only have to implement how the client con-
nects to the SOCKS proxy, when the connection was
made and when the stream was created between the
client and the server over the proxy. The same meth-
ods could be used, as if it was a simple TCP connec-
tion. There is no need to implement the send and re-
ceive functions, handle the control and data messages
because all of these are already implemented in the
parent class, in TCP.

2.12 Stateful and Stateless connections

There is a big difference between stateful and stateless
connections. In general, stateless connections are built
on UDP or ICMP, while stateful connections are built
on TCP. When a TCP connection is made, the asso-
ciated socket receives packets only from that connec-
tion. This does not hold true for stateless connections.
In their case everything that was sent on the port or
on that protocol will arrive at that socket. Just like in
the case of a Packet Selector the server has to find out
which client sent the message and make sure that:

e The client is a valid client

¢ The client is authenticated

* Protocol related properties are saved to the client
object (for example sequence number for ICMP)

All modules should run in a different thread. If the
connection is stateful all clients or connections could
run in a different thread as well. This could provide
a better stability; in case of an unexpected error only
the client or the module will be affected instead of the
whole framework.

2.13 Multi operating system support

If possible, the framework should be supported on
most operating systems. Unix based systems handle

pipes, sockets and devices as files and the select() sys-
tem call can be used very well to do read and write op-
erations on these different objects. On Windows, only
Winsock sockets can be used with its select() func-
tion, therefore different ways have to be implemen-
ted. Events or different objects can be used, or I/O
Completition ports have to be introduced. This makes
the implementation a little bit harder and the modules
more complex, but gives the users the possibility to
use the tool on different operating systems.

While Linux and Mac OS(X) support TUN devices
natively, the same cannot be said about Windows.
When it comes to Windows to set up and use a TUN
device the OpenVPN’s TAP-Windows6 driver must
be installed. This driver revises the inadequacy of the
operating system. Although Mac OS(X) has a TUN
device support, it needs to be handled in a slightly
different way than Linux. Everything that is written
to the tunnel device must be prefixed with four bytes
that designate the protocol; all that is read from the
device will have this prefix which needs to be dis-
carded.

Despite the caveats mentioned above, it opens new
opportunities to explore and exploit. For example
with a Terminal Services/Remote Desktop Services
tunnel module that uses a Dynamic Virtual Chan-
nel. These type of channels were introduced in Win-
dows Vista SP1/Windows Server 2008. Dynamic Vir-
tual Channels allow the user to transmit data over the
RDP without initiating new connections other than
the RDP session itself. In this way, the bridging of
segregated networks can be solved over RDP, which
would make the life of penetration testers easier in
many ways.

3 Usage

This framework can be used for both offensive and
defensive purposes.

3.1 Offense

The most trivial reason to use this tool for is to bypass
different obstacles. If the network was firewalled, and
only a port or one protocol is allowed, then it can be
configured to use that port or protocol for tunneling.
The server can be set up to bypass the filtering and the
client can gain unfiltered Internet access or even ex-
filtrate data. In this field the possibilities are endless.
The challenging part is to find firewall misconfigura-
tions, but the check functionality can help with this.
If the misconfigurations are more advanced low-level
manual checks have to be done and the framework
has to be adjusted accordingly. In case the firewall is
properly set up, but there is an internal proxy that for-
wards only special requests the HTTP or Proxy mod-
ules have to be changed to support this kind of com-
munication (like Kerberos authentication or a special
header in the HTTP request).

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

936

Stateful

s o] o [

Stateless

e

Figure 9: Module structure tree

The main objectives for offensive security are the
following:

¢ Get unfiltered Internet access
o Exfiltrate data

Both of these can be achieved with this framework.

3.2 Defense

As usual, the defense is more challenging and more
complex than the offense, because on this side one
does not only have to deal with technology but also
with the business side of things. Any modifications
on the network or appliances or modifications on the
accustomed settings in a company could have a busi-
ness impact. Just like in offense, this framework can
be useful for defense as well.The server should be set
up outside the organization and should be configured
according to the organization’s setup. If there is an
HTTP proxy in use a HTTP module should be con-
figured; if the proxy supports the CONNECT method,
but only on port 443/tcp, then the HTTP CONNECT
module should listen on port 443 /tcp and so on. The
testers should know about the organizations configu-
rations and its weaknesses to exploit those. The check
functionality can help to check whether it is possible
to bypass the internal policies and protections.

It is very important to mention that companies should
try to use the framework before attackers exfiltrate
data in order to see how to adjust their protective
mechanisms to avoid future exfiltration attacks that
are based on these protocols. With the exfiltration, not
only the internal policies and protection mechanisms
can be tested, but the SOC teams as well.

4 Mitigations

4.1 Captive portals

Some organizations are maintaining networks that are
utilizing captive portals. This technology is widely

spread nowadays, and the main reason for using it is
to control access to a network or to gather information
about the users. In the majority of the cases captive
portals and the surrounding configurations are mis-
configured and there is more than one way to bypass
them. Captive portal solutions should be configured
as detailed below. Until the client has not authenti-
cated himself or herself on the captive portal:

e All external and internal directed traffic should
be filtered. All packets should be dropped or re-
directed to the captive portal (except those that
are addressing the portal itself).

¢ Inter-client communication should be dropped as
well (all time).

® Only A (ipv4) and AAAA (ipv6) DNS record re-
quests should be answered

¢ All DNS requests should be rewritten to the cap-
tive portals IP address

These points ensure that the connected client can-
not communicate with anyone but the captive portal.
After authentication all traffic can be allowed.

4.2 DNS tunneling

Fighting against DNS tunneling in a company is not
an easy task. If the DNS server is not available, most
of the services and internal processes may stop, mak-
ing mistakes in this field could cause outrage. Prob-
ably one of the best ways to mitigate this kind of tun-
neling is the following:

e All traffic that is going to or coming from the In-

ternet should be filtered

¢ Only the HTTP proxy should have Internet ac-
cess

e HTTP Proxy should be enforced on all computers
including servers and workstations

¢ HTTP Proxy should do the DNS resolving in-
stead of the client

¢ External DNS names should NOT be resolved by
internal hosts

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 17, Jahrgang 9, Band 1 (2019)

937

¢ Internal DNS server should resolve only internal
addresses

¢ There will be exceptions in all companies - these
set of machines should be handled differently

* Have a separate DNS server that resolves ex-
ternal addresses for the exceptions

Organizations should include these points into their
planning phase before building up their network, oth-
erwise it could be difficult to amend the existing archi-
tecture.

5 Conclusion

This paper presented an abstract of all tunneling pro-
tocols and identified the similar and identical parts
among them. It provided a possible solution on how
to implement a proper framework that handles all the
similarities and differences with minimal code duplic-
ation.

The attached reference implementation proves the
solutions presented in this paper and shows that it is
possible to simplify the tunneling process and make it
universal between transport protocols. Until now dif-
ferent transport protocols had to be used for different
solutions. This paper and the reference implementa-
tion aim to change this and try to help both sides of
the IT-security community to recognize the potential
in this field again.

The reference implementation is still under develop-
ment, but it can be accessed at the following URLs:

e http://xfltreat.info/
* https://github.com/earthquake/XFLTReaT/

About the Author

Balazs Bucsay (@xoreipeip) is a Managing Security
Consultant at NCC Group in the United Kingdom
who does research and penetration testing for vari-
ous companies. He has presented at many confer-
ences around the world including Honolulu, Atlanta,
London, Oslo, Moscow, and Vienna on multiple ad-
vanced topics relating to the Linux kernel, NFC and
Windows security. Moreover he has multiple certi-
fications (OSCE, OSCP, OSWP, GIAC GPEN) related
to penetration testing, exploit writing and other low-
level topics; and has degrees in Mathematics and
Computer Science. Balazs thinks that sharing know-
ledge is one of the most important things in life, so
he always shares his experience and knowledge with
his colleagues and friends. Because of his passion for
technology, he starts his second shift in the evenings,
right after work to do further research.

References

Bucsay, B. (2019). Xfltreat: Unified tunneling. Mag-
deburger Journal zur Sicherheitsforschung, 17, 927-
937. Retrieved May 11, 2019, from http:/ /www.
sicherheitsforschung-magdeburg.de / uploads /
journal/MJS_062_bucsay_XFLTReaT.pdf

Combs, G. (2018). Wireshark. Retrieved July 30, 2018,
from https:/ /www.wireshark.org

Edi, Péder, S. & Gil, T. (2018). Icmptx. Retrieved July
30, 2018, from https:/ / github.com /jakkarth /
icmptx

Ekman, E. & Andersson, B. (2018). Iodine. Retrieved
July 30, 2018, from http:/ /code.kryo.se/iodine

Insecure.Com LLC. (2018). Nmap. Retrieved July 30,
2018, from https:/ /nmap.org

Kapil, D. (2018). Icmptunnel. Retrieved July 30, 2018,
from https://dhavalkapil.com/icmptunnel /

Krasnyansky, M., Yevmenkin, M. & Thiel, E. (2018).
Universal tun/tap device driver. Retrieved July
30, 2018, from https:/ / www.kernel.org /doc/
Documentation/networking/tuntap.txt

OpenVPN Inc. (2018). Openvpn - open source vpn.
Retrieved July 30, 2018, from https:/ /openvpn.
net

Scholler, F. (2018). Hans. Retrieved July 30, 2018, from
http:/ /code.gerade.org/hans

Shichao. (2018). Shichao’s notes. Retrieved July 30,
2018, from https:/ /notes.shichao.io

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://xfltreat.info/
https://github.com/earthquake/XFLTReaT/
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_062_bucsay_XFLTReaT.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_062_bucsay_XFLTReaT.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_062_bucsay_XFLTReaT.pdf
https://www.wireshark.org
https://github.com/jakkarth/icmptx
https://github.com/jakkarth/icmptx
http://code.kryo.se/iodine
https://nmap.org
https://dhavalkapil.com/icmptunnel/
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://openvpn.net
https://openvpn.net
http://code.gerade.org/hans
https://notes.shichao.io
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

	1 Tunneling
	1.1 Tunneling basics
	1.2 Tunneling 101
	1.3 Maximum Transmission Unit
	1.4 TUN and TAP

	2 Framework
	2.1 Problems with existing solutions
	2.2 Requirements for a framework
	2.3 Interface
	2.4 Routing
	2.5 Multi client support
	2.6 Transport Protocol Modules
	2.7 Support files
	2.8 Check Functionality
	2.9 Auto-tune
	2.10 Control and Data channels
	2.11 Module tree
	2.12 Stateful and Stateless connections
	2.13 Multi operating system support

	3 Usage
	3.1 Offense
	3.2 Defense

	4 Mitigations
	4.1 Captive portals
	4.2 DNS tunneling

	5 Conclusion

