
Magdeburger Journal zur Sicherheitsforschung

Gegründet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher

Erschienen im Magdeburger Institut für Sicherheitsforschung
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

This article appears in the special edition »In Depth Security – Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

BitCracker

The Bitlocker Password Cracker

Elena Agostini and Massimo Bernaschi

BitLocker is a full-disk encryption feature available in recent Windows versions. It is designed to protect data
by providing encryption for entire volumes and it makes use of a number of different authentication methods.
In this work we present a solution, named BitCracker, to attempt the decryption, by means of a dictionary
attack, of memory units encrypted by BitLocker with a user supplied password. To that purpose, we resort to
GPU (Graphics Processing Units) that are, by now, widely used as general-purpose coprocessors in high per-
formance computing applications. BitLocker decryption process requires the execution of a very large number
of SHA-256 hashes and also AES, so we propose a very fast solution, highly tuned for Nvidia GPU, for both
of them. In addition we take the advantage of a weakness in the BitLocker decryption algorithm to speed up
the execution of our attack. We benchmark our solution using the three most recent Nvidia GPU architectures
(Kepler, Maxwell and Pascal), carrying out a comparison with the Hashcat password cracker. Finally, our
OpenCL implementation of BitCracker has been recently released within John The Ripper, Bleeding-Jumbo
version.
Keywords: BitLocker, Hash, SHA-256, AES, GPU, CUDA, Cryptographic Attack, Password Cracking

Citation: Agostini, E. & Bernaschi, M. (2019). Bitcracker: Bitlocker meets gpus. Magdeburger Journal zur Sicher-
heitsforschung, 18, 977–986. Retrieved November 9, 2019, from http://www.sicherheitsforschung-magdeburg.
de/uploads/journal/MJS_068_Agostini_Bitlocker.pdf

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_068_Agostini_Bitlocker.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_068_Agostini_Bitlocker.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 978

1 Introduction

BitLocker is a data protection feature that integrates
with the Windows operating system and addresses
the threats of data theft or exposure from lost, stolen,
or inappropriately decommissioned computers. It of-
fers a number of different authentication methods,
like Trusted Platform Module, Smart Key, Recovery
Password, user supplied password. BitLocker fea-
tures a pretty complex proprietary architecture but
it also leverages some well-known algorithms, like
SHA-256 and AES. It is possible, and relatively easy
(to this purpose, commercial tools are available (»El-
comsoft Forensic Disk Decryptor«, 2018)) to instantly
decrypt disks and volumes protected with BitLocker
by using the decryption key extracted from the main
memory (RAM). In addition, it is also possible to de-
crypt for offline analysis or instantly mount BitLocker
volumes by utilizing the escrow key (BitLocker Re-
covery Key) extracted from a user’s Microsoft Ac-
count or retrieved from Active Directory.
If the decryption key can not be retrieved, the only al-
ternative remains to unlock password-protected disks
by attacking the password. The same commercial
tools above mentioned, offer this as an option but in
a quite generic form (i.e.,) without taking into account
the specific features of BitLocker. Moreover, accord-
ing to some comments1, they may be also not fully
reliable. The goal of the present paper is to describe
our approach to attack BitLocker password-protected
storage units. We carefully studied available informa-
tion about BitLocker architecture and directly inspec-
ted several types of units in order to find out how to
minimize the amount of work required to check a can-
didate password. The platforms we use for the attack
are based on Nvidia GPUs and we carefully optim-
ized the most computing intensive parts of the pro-
cedure achieving a performance that is, at least, com-
parable with that provided by well-known password
crackers like Hashcat (»Hashcat«, 2018) for the eval-
uation of the SHA-256 digest function. However, the
main goal of our work is not providing an alternat-
ive to Hashcat as a general framework for dictionary
attacks but to offer the first open-source high perform-
ance tool to test the security of storage units protected
by BitLocker using the user password and recovery
password authentication methods.

2 BitLocker

BitLocker (formerly BitLocker Drive Encryption) is a
full-disk encryption feature included in the Ultimate
and Enterprise editions of Windows Vista and Win-
dows 7, the Pro and Enterprise editions of Windows
8 and Windows 8.1, Windows Server 2008 and Win-
dows 10. It is designed to protect data by providing
encryption for entire volumes.

1 https://blog.elcomsoft.com/2016/07/breaking-bitlocker-
encryption-brute-forcing-the-backdoor-part-ii/

BitLocker can encrypt several types of memory units
like internal hard disks or external memory devices
2(flash memories, external hard disks, etc..) offering
a number of different authentication methods, like
Trusted Platform Module, Smart Key, Recovery Key,
password, etc.. In this paper we focus on two dif-
ferent authentication modes: the user password mode,
in which the user, to encrypt or decrypt a memory
device, must type a password (as represented in Fig-
ure 1) and the recovery password mode, that is a 48-digit
key generated by BitLocker (regardless of the authen-
tication method chosen by the user) when encrypting
a memory device3 . By means of the recovery pass-
word the user can access an encrypted device in the
event that she/he can’t unlock the device normally.
During the encryption procedure, each sector in the
volume is encrypted individually, with a part of the
encryption key being derived from the sector num-
ber itself. This means that two sectors containing
identical unencrypted data will result in different en-
crypted bytes being written to the disk, making it
much harder to attempt to discover keys by creating
and encrypting known data. BitLocker uses a com-
plex hierarchy of keys to encrypt devices. The sec-
tors themselves are encrypted by using a key called
the Full-Volume Encryption Key (FVEK). The FVEK is
not used by or accessible to users and it is, in turn,
encrypted with a key called the Volume Master Key
(VMK). Finally, the VMK is also encrypted and stored
in the volume; for instance, if the memory device has
been encrypted with the user password method, in
the volume metadata there are two encrypted VMKs:
the VMK_U, that is the VMK encrypted with the user
password, and the VMK_R, that is the VMK encryp-
ted with the recovery password.
During the decryption procedure (Figure 2) BitLocker,
depending on the authentication method in use, starts
to decrypt the VMK. Then, if it obtains the right value
for the VMK, it decrypts in turn the FVEK and then
the entire memory device.
The attack described in the present paper aims at de-
crypting the correct VMK key which belongs to an en-
crypted memory unit through a dictionary attack to
the user password or to the recovery password. That
is, if an attacker is able to find the password to cor-
rectly decrypt the VMK key, she/he is able to decrypt
the entire memory unit with that password.

2.1 User Password VMK Decryption
Procedure

To gain an insight about the workings of our attack,
more information are necessary about the VMK de-
cryption procedure (Figure 3) when the authentica-
tion method is a user password (see also (N. Kumar &
V. Kumar, 2008) (Aorimn, 2018) and (Metz, 2018)):

2 BitLocker To Go feature

3 Microsoft Blog: Recover Password method:
https://docs.microsoft.com/en-us/windows/device-
security/bitlocker/bitlocker-recovery-guide-plan

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 979

Figure 1: BitLocker encryption of an USB pendrive using the password authentication method.

1. the user provides the password;
2. SHA-256 is executed twice on it;
3. there is a loop of 0x100000 iterations, in which

SHA-256 is applied to a structure like:

typedef struct {
unsigned char updateHash[32];

//last SHA-256 hash calculated
unsigned char passwordHash[32];

//hash from step 2
unsigned char salt[16];
uint64_t hash_count;

// iteration number
} bitlockerMessage;

4. this loop produces an intermediate key, used
with AES to encrypt the Initialization Vector (IV)
(derived from a nonce);

5. XOR between encrypted IV and encrypted Mes-
sage Authentication Code (MAC) to obtain the
decrypted MAC;

6. XOR between encrypted IV and encrypted VMK
to obtain the decrypted VMK;

7. if the MAC, calculated on the decrypted VMK, is
equal to the decrypted MAC, the input password
and the decrypted VMK are correct;

All the elements required by the decryption proced-
ure (like VMK, MAC, IV, etc..) can be found inside
the encrypted volume. In fact, during the encryp-
tion, BitLocker stores not only encrypted data but
also metadata that provide information about encryp-

tion type, keys position, OS version, file system ver-
sion and so on. Thanks to (Metz, 2018), (Aorimn,
2018), (N. Kumar & V. Kumar, 2008) and (Kornblum,
2009) we understood how to get all of these inform-
ations reading the BitLocker Drive Encryption (BDE)
encrypted format. After an initial header, every BDE
volume contains 3 (for backup purposes) FVE (Full
Volume Encryption) metadata blocks, each one com-
posed by a block header, a metadata header and an
array of metadata entries.
In Figure 4 we report an example of FVE block be-
longing to a memory unit encrypted with Windows
8.1, enumerating the most interesting parts:

1. The “-FVE-FS-” signature, which marks the be-
ginning of an FVE block

2. The Windows version number
3. The type and value of a VMK metadata entry
4. According to this value, the VMK has been en-

crypted using the user password authentication
method

5. The salt of the VMK
6. According to this value, the type of VMK encryp-

tion is AES-CCM
7. Nonce
8. Message Authentication Code
9. Finally, the VMK

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 980

RSA

TPM

TPM + PIN

AES

User
Password

Recovery
Key

Smart
Key

Volume Master Key
256 bit AES

Full Volume Encryption Key
256 bit

AES

Decrypted Memory
Unit

SHA-256

Figure 2: BitLocker encryption/decryption scheme

Update
Hash

SHA256(Hash)

User
Password

Salt

Intermediate
Key

Encrypt IV
with AES

Compare
MAC

values

Loop 1.048.576
 iterations

IV

Encrypted IV

XOR
Encrypted

MAC XOR Encrypted
VMK

Decrypted
MAC

Decrypted
VMK

Compute
MAC

Figure 3: VMK decryption procedure

2.2 Recovery Password VMK Decryption
Procedure

As above mentioned, the recovery password is a
kind of passe-partout for all the authentication meth-
ods. According to (Kornblum, 2009), the recov-
ery password is a 48-digit number composed by
eight groups of six digits; each group of six di-
gits must be divisible by eleven and must be less
than 720896. Finally, the sixth digit in each group
is a checksum digit. For instance, a valid recovery
password is: 236808-089419-192665-495704-618299-
073414-538373-542366. The number of all possible re-
covery password candidates is huge, thus building
the entire dictionary would require too much stor-
age.
The algorithm used by BitLocker to encrypt a device
using the recovery password is similar to the user
password one (with a few differences during the ini-

tial SHA-256 application): use the input password
to produce an intermediate key useful to encrypt the
VMK.
When the user encrypts a new memory device, re-
gardless of the authentication method chosen, Bit-
Locker always generates a recovery password; for this
reason, every BitLocker encrypted memory unit has at
least an encrypted VMK. Finally, performance in case
of a recovery password attack is similar to the per-
formance in case of a user password attack; therefore,
during the rest of this paper, we report only about the
performance of user password attacks.

3 BitCracker

Our software, named BitCracker (»BitCracker on Git-
Hub«, 2018), aims at finding (starting from a diction-
ary) the key of a memory unit encrypted using the

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 981

Figure 4: FVE metadata block, BitLocker Windows 8.1

user password authentication or recovery password
methods of BitLocker. It executes on GPUs (Graphics
Processing Units 4) the BitLocker decryption procedure
with several performance improvements as described
in the following sections:

• We introduced a preprocessing step before start-
ing the main attack, to store in memory useful in-
formation for the SHA-256 based main loop (Sec-
tion 3.1)

• We found a way to remove the final MAC com-
putation and comparison (Section 3.2).

Finally, our code has been widely optimized for
NVIDA GPUs (CUDA-C) but we implemented also
an OpenCL version for portability reasons.

3.1 First improvement: SHA-256 and W
Words

The most time-consuming part of the decryption al-
gorithm is the loop of 0x100000 (1.048.576) SHA-256
operations, since a single hash involves many arith-
metic operations. Moreover, during each iteration, the
SHA-256 algorithm is applied twice to the 128 byte
structure bitlockerMessage (Section 2.1) which is com-
posed by several fields as shown in Table 1.
According to the SHA-256 standard (for a full descrip-
tion, see (of Standards & Technology, 2015)), the input
message, before being hashed, is transformed into a
set of so called W blocks according to the rule in Al-
gorithm 1.
It is apparent that the first 16 W words depend on the
original message and the others on the first 16 words.
Therefore, looking at the message in Table 1 we were

4 https://it.wikipedia.org/wiki/Graphics_Processing_Unit

able to compute all possible W words useful for the
SHA-256 of the second block of the message at each it-
eration in the loop, with no need to repeat many arith-
metic operations during each iteration. Indeed, since
for each encrypted memory unit, salt, padding and
message size are always the same and hash_count
is a number between 0 and (0x100000-1), we can pre-
compute and store in memory all the W words, that
require:

1.048.576 ∗ 64 = 67.108.864 words ∗ 4 byte ' 256Mb

This kind of improvement is specific for BitLocker
(precomputation can be done if there is a part of the
input message that is known ahead of time) and can-
not be applied to a general SHA-256 implementa-
tion.

3.2 Second improvement: MAC
comparison

During our analysis of the decrypted VMK’s struc-
ture, using different Windows versions (7, 8.1 and 10)
and a number of encrypted devices, we noticed sev-
eral interesting facts:

1. The size of the VMK is always 44 bytes
2. First 12 bytes of decrypted VMK (Table 2) hold

information about the key
• First 2 bytes are the size of VMK, that is al-

ways 44 (0x002c)
• Bytes 4 and 5 are the version number, always

equal to 1
• Byte 8 and 9 are the type of encryption.

In case of user password, BitLocker always
uses AES-CCM with a 256 bit key. So, ac-

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 982

64-byte block #1 64-byte block #2
32 bytes 32 bytes 16 bytes 8 bytes 32 bytes 8 bytes

updated_hash password_hash salt hash_count padding message size

variable fixed
fixed for each

encrypted unit
between 0 and

0x100000 fixed fixed to 88

Table 1: BitLocker SHA-256 message

Algorithm 1 SHA-256 standard algorithm, W blocks
1: Define ROTRn(x) = (x >> n) ∨ (x << w − n) with 0 ≤ n < w,w = 32
2: Define SHRn(x) = (x >> n)
3: Define σ256

0 = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)
4: Define σ256

1 = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)
5:
6: for i = 1 to N do
7: Prepare the message schedule Wt

Wt =

{
M i

t if 0 ≤ t ≤ 15

σ256
1 (Wt−2) +Wt−7 + σ256

0 (Wt−15) +Wt−16 if 16 ≤ t ≤ 63

8: applyHashFunction(W)
9: end for

cording to the Microsoft standard, this value
is between 0x2000 and 0x2005

3. Remaining 32 bytes are the key
Following these considerations, we removed the
MAC test doing a simple check on the initial 12 bytes
of the decrypted VMK, as shown in Figure 5.
To check the reliability of our solution, we tested
BitCracker with several storage devices (both internal
and USB-connected hard disks) encrypted by using
passwords having between 8 and 16 characters under
Windows 7 Enterprise Edition, Windows 7 Ultimate
Edition and Windows 8 Pro N and Windows 10 En-
terprise Edition (testing both BitLocker’s compatible
and non compatible modes) 5.
Although BitCracker always returned the correct out-
put, some false positive may occur with this improved
VMK check; for this reason BitCracker can be ex-
ecuted in 2 different modes: with (slower solution) or
without (faster solution) the MAC comparison .

4 CUDA implementation
performance

In this section we present the results of benchmark-
ing activities of our stand-alone CUDA implementa-
tion of BitCracker with the improvements described
in previous sections. We used several NVIDIA GPUs
whose features are summarized in Table 3 6.
During the following tests we always set the number

5 Recently Microsoft introduced the BitLocker "Not Compatible"
encryption mode in Windows 10: sectors of the memory device
are encrypted with XTS-AES instead of AES-CCM. This change
doesn’t affect BitCrackers algorithm because there isn’t any dif-
ference in the decryption procedure of the VMK.

6 CC is Compute Capability while SM is Stream Multiprocessors

of CUDA blocks to the maximum number of SM al-
lowed by the GPU architecture: further increasing this
number does not improve performance. The number
of CUDA threads per block is always 1024 because
each thread requires no more than 64 registers (we
reached the maximum occupancy).

4.1 Kepler Architecture

We started to benchmark our final improved solution
on the Kepler architecture using GPU GTK80 (Table
4).
The more the input grows, the better BitCracker per-
forms. Increasing the number of blocks, each one with
the same number of passwords per thread (i.e., 8),
leads to a better performance since the kernel launch-
ing overhead (that is basically constant) is distributed
among more blocks.

4.2 Maxwell Architecture

In Table 5 we present the same benchmarks of the pre-
vious Section executed on the GFTX, using CC3.5 and
CC5.2 (both available on the GPU).
It is worth to note that performance improves both
due to the higher number of multiprocessors avail-
able in the new generation of NVIDIA cards and for
the enhancements in integer instructions throughput
7. This confirms that a well-tuned CUDA code can be-
nefit from new features with a very limited effort.

7 NVIDIA Developer Zone Maxwell:
https://developer.nvidia.com/maxwell-compute-architecture

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 983

Byte 0 1 2 3 4 5 6 7 8 9 10 11
Value 2c 00 00 00 01 00 00 00 03 20 00 00

Table 2: Example of initial 12 bytes of VMK decryption key

Update
Hash

SHA256(Hash)Salt

Intermediate
Key

Encrypt IV
with AES

Check VMK
format

Loop 1.048.576
 iterations

IV

Encrypted IV

XOR

Encrypted VMK

Decrypted
VMK

User
Password

Figure 5: VMK decryption procedure improved

4.3 Pascal architecture

In Table 6, we summarize our benchmarks on
GTP100. The performance improvement is close to a
× 2 factor with respect to the Maxwell architecture,
even if the main advantage of the new architecture
(i.e., the memory bandwidth that is about three times
higher with respect to the Kepler architecture) has lim-
ited impact on a compute-intensive application like
BitCracker.

5 OpenCL Implementation and
John The Ripper

To make BitCracker available also to non-NVIDIA
GPUs, we developed an OpenCL implementation.
In order to take advantage of their system of rules
for wordlist generation, our OpenCL implementation
has been released also as a John the Ripper (Jumbo
version) (»John the Ripper«, 2018) format (named
bitlocker-opencl); the source code can be found here
(»John the Ripper GitHub«, 2018) whereas the wiki
reference page is here (»John the Ripper BitCracker
Wiki Page«, 2018). When running bitlocker-opencl
format, the John The Ripper internal engine auto-
tunes all the OpenCL parameters (like local and
global work groups). Running the following test,
we reached up to 827 p/s passwords/second on the

GTP100 .

6 Hash rate comparison

It is possible to evaluate BitCracker’s performance by
looking at the number of hashes per second that it
computes (we recall that the check of each password
requires 2.097.154 hashes, as described in section 2.1).
The number of hashes per second that BitCracker is
able to perform is summarized in Table 78 .
To assess BitCrackers performance, we carried out a
comparison with the SHA-256 format (-m 1400) Hash-
cat (»Hashcat«, 2018) v4.1.0. We highlight that this is
not a completely fair comparison since Hashcat does
not execute exactly the same BitCracker’s algorithm
(BitCracker performs other operations beyond SHA-
256) and it currently supports OpenCL only. The test
in Listing 2 aims at providing an idea about the num-
ber of SHA256 that Hashcat is able to compute on our
GTP100.
The resulting number of hashes per second is about
3290 MH/s that is comparable to BitCrackers best
performance on the same GPU.

8 MH stands for MegaHashs

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 984

Listing 1: John The Ripper, BitLocker OpenCL format
$./john --format=bitlocker-opencl --mask=?a?a?a?a?a?a?a?a hash.txt
Device 0: Tesla P100-PCIE-16GB
Using default input encoding: UTF-8
Loaded 1 password hash (BitLocker-opencl, BitLocker [SHA256 AES OpenCL])
Cost 1 (iteration count) is 1048576 for all loaded hashes
Note: This format may emit false positives,

so it will keep trying even after finding a possible candidate.
Note: minimum length forced to 8
0g 0:00:03:18 0g/s 795.8p/s 795.8c/s 795.8C/s GPU:47◦C

>Mdaaaaa..O7yaaaaa
0g 0:00:03:19 0g/s 827.8p/s 827.8c/s 827.8C/s GPU:47◦C

L7yaaaaa..;n5aaaaa
0g 0:00:03:20 0g/s 823.7p/s 823.7c/s 823.7C/s GPU:47◦C

L7yaaaaa..;n5aaaaa
0g 0:00:03:39 0g/s 817.7p/s 817.7c/s 817.7C/s GPU:47◦C

v;5aaaaa..\ 4aaaaa
0g 0:00:04:22 0g/s 820.2p/s 820.2c/s 820.2C/s GPU:47◦C

P)6aaaaa..1-baaaaa

Listing 2: Hashcat, SHA-256 format
./hashcat -m 1400 -a 3 -d 3 -O -w 3 hash.txt ?a?a?a?a?a?a?a?a
....
Session........: hashcat
Status.........: Running
Hash.Type......: SHA-256
Hash.Target....: 68585251d17afaec3d0dd2f5315ee5a826a708d3c94f ... 97aa69
Time.Started...: Fri Jun 8 15:54:03 2018 (1 min, 11 secs)
Time.Estimated.: Mon Jul 2 00:18:53 2018 (23 days, 8 hours)
Guess.Mask.....: ?a?a?a?a?a?a?a?a [8]
Guess.Queue....: 1/1 (100.00%)
Speed.Dev.#3...: 3288.3 MH/s (71.07ms) Accel:32 Loops:128 Thr:1024 Vec:1
Recovered......: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts
Progress.......: 234646142976/6634204312890625 (0.00%)
Rejected.......: 0/234646142976 (0.00%)
Restore.Point..: 0/7737809375 (0.00%)
Candidates.#3..: 1p2erane -> SC2[7sta
HWMon.Dev.#3...: Temp: 51c Util:100% Core:1328MHz Mem: 715MHz Bus:16

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 985

Acronim Name Arch CC # SM CUDA
GTK80 Tesla K80 Kepler 3.5 13 7.0/7.5
GFTX GeForce Titan X Maxwell 5.2 24 7.5

GTP100 Tesla P100 Pascal 6.1 56 8.0

Table 3: NVIDIA GPUs used for bench

Blocks Threads/Block Pwds/Thread Pwds/Kernel Seconds Pwds/Sec
1 1.024 1 1.024 30 33
1 1.024 8 8.192 245 33
2 1.024 8 16.384 247 66
4 1.024 8 32.768 248 132
8 1.024 8 65.536 253 258

13 1.024 8 106.496 276 385

Table 4: GTK80 benchmarks

7 Conclusions

We presented the first open-source implementation of
a tool for efficient dictionary attacks to the BitLocker
crypto system.
The results show that our BitCracker may compete
with a state-of-the art password cracker in terms of
raw performance on the basic computational kernels
whilst it is the only one providing specific shortcuts
to speedup the BitLocker decryption procedure. We
can conclude that, although the complex architecture
of BitLocker reduces significantly the number of pass-
words that is possible to test in a unit of time, with
respect to other crypto-systems (e.g., OpenPGP), it is
still necessary to pay special attention to the choice of
the user password, since, with a single high-end GPU,
more than a quarter-billion of passwords can be tested
in a day (∼ 1418 passwords per second on a GTP100
× 86400 seconds ' 122 million in a day). Our im-
plementations of SHA-256, fully customized for the
CUDA-C environment, can be reused (provided that
the W words optimization is turned off, since it cannot
be applied to a general situation) for any procedure
that requires to use that hash function (e.g., HMAC-
SHA256).
Other possible improvements include the enhance-
ment of BitCracker by adding a mask mode attack an-
d/or a smart reading of the input dictionary (e.g. by
assigning a probability to them) that are available in
most widely used password crackers.
We released our CUDA and OpenCL standalone im-
plementations on GitHub here (»BitCracker on Git-
Hub«, 2018) and as bitlocker-opencl format for John The
Ripper (»John the Ripper«, 2018).

About the Authors

Elena Agostini received her Ph.D. in Computer Sci-
ence from the University of Rome »Sapienza« in col-
laboration with the National Research Council of
Italy. Her main scientific interests are parallel com-
puting, GPGPUs, HPC, network protocols and crypt-
analysis.
Massimo Bernaschi has been 10 years with IBM work-

ing in High Performance Computing. Currently he is
with the National Research Council of Italy (CNR) as
Chief Technology Officer of the Institute for Comput-
ing Applications. He is also an adjunct professor of
Computer Science at "Sapienza" University in Rome.
He has been named CUDA Fellow in 2012.

References

Aorimn. (2018). Dislocker: Fuse driver to
read/write windows’ bitlocker-ed volumes un-
der linux/mac osx. Retrieved from https : / /
github.com/Aorimn/dislocker

BitCracker on GitHub. (2018). Retrieved from https:
//github.com/e-ago/bitcracker

Elcomsoft Forensic Disk Decryptor. (2018). Retrieved
from https://www.elcomsoft.com/efdd.html

Hashcat. (2018). Retrieved from https://hashcat.net/
hashcat

John the Ripper. (2018). Retrieved from http://www.
openwall.com/john

John the Ripper BitCracker Wiki Page. (2018). Re-
trieved from http://openwall.info/wiki/john/
OpenCL-BitLocker

John the Ripper GitHub. (2018). Retrieved from https:
//github.com/magnumripper/JohnTheRipper

Kornblum, J. D. (2009). Implementing bitlocker drive
encryption for forensic analysis. Digital Investig-
ation: The International Journal of Digital Forensics
& Incident Response, 5, 75–84.

Metz, J. (2018). Bitlocker drive encryption (bde)
format specification. Retrieved from https ://
github . com / libyal / libbde / tree / master /
documentation

N. Kumar & V. Kumar. (2008). Bitlocker and windows
vista. Retrieved from http : / / www. nvlabs .
in/uploads/projects/nvbit/nvbit_bitlocker_
white_paper.pdf

Secure Hash Standard (SHS). (2015). Retrieved from
http://dx.doi.org/10.6028/NIST.FIPS.180-4

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

https://github.com/Aorimn/dislocker
https://github.com/Aorimn/dislocker
https://github.com/e-ago/bitcracker
https://github.com/e-ago/bitcracker
https://www.elcomsoft.com/efdd.html
https://hashcat.net/hashcat
https://hashcat.net/hashcat
http://www.openwall.com/john
http://www.openwall.com/john
http://openwall.info/wiki/john/OpenCL-BitLocker
http://openwall.info/wiki/john/OpenCL-BitLocker
https://github.com/magnumripper/JohnTheRipper
https://github.com/magnumripper/JohnTheRipper
https://github.com/libyal/libbde/tree/master/documentation
https://github.com/libyal/libbde/tree/master/documentation
https://github.com/libyal/libbde/tree/master/documentation
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_white_paper.pdf
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_white_paper.pdf
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_white_paper.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 18, Jahrgang 9, Band 2 (2019) 986

CC Blocks Threads/Block Pwds/Thread Pwds/Kernel Seconds Pwds/Sec
3.5 1 1.024 1 1.024 24 42
3.5 1 1.024 8 8.192 191 42
3.5 24 1.024 8 196.608 212 925
3.5 24 1.024 128 3.145.728 3496 900
5.2 1 1.024 1 1.024 23 44
5.2 1 1.024 8 8.192 188 43
5.2 24 1.024 8 196.608 210 933
5.2 24 1.024 128 3.145.728 3369 933

Table 5: GFTX benchmarks, CC3.5 and CC5.2

CC Blocks Threads/Block Pwds/Thread Pwds/Kernel Seconds Pwds/Sec
6.1 1 1.024 1 1.024 38 26
6.1 56 1.024 1 57.344 40 1.418
6.1 56 1.024 8 458.752 336 1.363
6.1 56 1.024 128 7.340.032 5444 1.348

Table 6: GTP100 benchmark

GPU Password/Sec Hash/Sec
GTK80 385 807 MH/s
GFTX 933 1.957 MH/s

GTP100 1.418 2.973 MH/s

Table 7: BitCracker’s hashes per second, CUDA implementation

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

	1 Introduction
	2 BitLocker
	2.1 User Password VMK Decryption Procedure
	2.2 Recovery Password VMK Decryption Procedure

	3 BitCracker
	3.1 First improvement: SHA-256 and W Words
	3.2 Second improvement: MAC comparison

	4 CUDA implementation performance
	4.1 Kepler Architecture
	4.2 Maxwell Architecture
	4.3 Pascal architecture

	5 OpenCL Implementation and John The Ripper
	6 Hash rate comparison
	7 Conclusions

