Magdeburger Journal zur Sicherheitsforschung

Gegriindet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher
Erschienen im Magdeburger Institut fiir Sicherheitsforschung
http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

This article appears in the special edition »In Depth Security — Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Building Your Own Web Application Firewall as a Service

And Forgetting about False Positives

Juan Berner

When a Web Application Firewall (WAF) is presented as a defensive solution to web application attacks, there
is usually a decision to be made: Will the solution be placed inline (and risk affecting users due to outages or
latency) or will it be placed out of band (not affecting users but not protecting them either). This paper will
cover a different approach you can take when deciding how to use any WAF at your disposal, which is to try
and get the best of both worlds, making the WAF work in passive mode out of band detecting attacks and in
active mode by selectively routing traffic through your WAF to decide if it should block the request or allow
it.

To achieve this the paper will show how to abstract the WAF around a web service, something that developers
are commonly used to working with, which can result in delivering security in a targeted and scalable man-
ner. In this network agnostic setup, a WAF web service functionality can grow horizontally, allowing you to
enhance the WAF decisions with your own business knowledge. This will mean that the decision to block
or to route traffic through the WAF will not only depend on the WAF’s decision but also on data about your
application and its context, which can significantly reduce the false positive rate up to the point of practically
not existing.

This paper will go through how such a service can be built with open source examples, what alternatives are
there, depending on the flexibility of the WAF used, and how this approach can be used to manually decide
on the false positive rate wanted and the desired business risk depending on the attack type and it’s possible
impact.

Keywords: WAF, Web Application Firewall, Security Architecture, Web Application

Citation: Berner, J. (2020). Building your own web application firewall as a service: And forgetting about
false positives. Magdeburger Journal zur Sicherheitsforschung, 19, 987-994. Retrieved June 25, 2020, from http:
/ /www.sicherheitsforschung-magdeburg.de/uploads/journal /MJS_069_Berner_ WAF.pdf


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_069_Berner_WAF.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_069_Berner_WAF.pdf

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020)

988

1 Introduction

Current modern websites allow the capture, pro-
cessing, storage and transmission of sensitive cus-
tomer data (e.g., personal details, credit card num-
bers, social security information, etc.) for immediate
and recurrent use. To ensure that this can happen
safely, organizations need to employ different types
of controls and tools that allow them to increase their
capacity to detect and respond to threats to their net-
work.

One of the main challenges in implementing these
tools surfaces due to the requirement that for them
to analyse and decide whether the traffic must be
blocked they need to be placed in the middle of the
traffic, adding latency to each request which can be-
come prohibitive for applications that depend on a
low latency response. Another challenging obstacle
when deploying them is caused due to the false posit-
ive rate, or how common these tools decide a normal
user is malicious and might block their activity, which
can make the adoption of these tools much harder
than they would expect.

1.1 Web Application Firewall

One of the tools which are used to protect websites
from application attacks is called a Web Application
Firewall (WAF). This is an application firewall for
HTTP applications which applies a set of rules to an
HTTP conversation. Generally, these rules cover com-
mon attacks such as Cross-site Scripting (XSS) and
SQL Injection.

These are usually deployed in one of the following
architectures:

1.1.1 Inline

When on inline mode, a WAF appliance is placed in
the middle of the traffic between a user and a web
application, allowing it to inspect and block attacks in
a transparent manner to web servers, as shown in Fig.
5.

1.1.2 Out of band

In this mode the WAF would have the ability to in-
spect the traffic sent to the web server but unable to
react to it since it would only see a copy of the traffic,
as shown in Fig. 2.

1.1.3 Agent

When using an Agent mode for a WAF, software is
placed in the web server imitating an inline mode
with a hardware setup. While this allows an easier
network placement it can become more invasive on
the deployment environment and lead to less efficient
resource allocation for web servers, as shown in Fig.
3.

1.1.4 Cloud

When using a cloud provider as a WAF solution, web
servers can benefit from a simple setup and what
would seem like unlimited scaling capacity. This can
be achieved by allowing a third party to be placed in
the middle of all traffic between web servers and their
customers. The drawback of such a setup would be
an increased latency incurred due to the traffic going
through the cloud provider (which can be reduced if
it’s the same provider used for the web application)
and the risk of having the data go through a third
party, as shown in Fig. 4.

1.2 Typical problems with WAF setups
1.2.1 Network placement

As mentioned with the out of band or inline archi-
tectures, depending on the scale of the organization
what network placement strategy to use can become
a challenging part of placing a installing a WAF solu-
tion. In environments where there might exist mul-
tiple datacenters hosting the applications needed to
protect, ensuring that there is a complete coverage of
a WAF (either placed in-line or always capturing cop-
ies of the traffic) can become a daunting task. This
can lead to inefficient use of resources or a heavy in-
vestment on network changes to accommodate to the
WATF solution.

1.2.2 False positive rate

One of the biggest problems with WAF solutions act-
ing in blocking mode is the false positive rate they
can generate. The false positive rate can indicate how
many customers are being blocked while not actually
performing an attack, which can translate into finan-
cial loss and reputational damage. One of the major
reasons why WAF solutions are not placed in blocking
mode is due to the false positive rate affecting enough
customers that security teams are forced to stop block-
ing attacks, turning the solution into simply a visibil-
ity tool without the ability to stop attacks.

1.2.3 Latency added

Given that the WAF needs to inspect the traffic and
decide if it should be blocked or not, latency is ad-
ded by WAF applications. Depending on the network
placement, and how costly the analysis operations
they perform might be, this can become prohibitive
to applications that depend on low latency responses
to function or engage their users.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020) 989

{—h'{ IiT

WebApp
Customer WAF

Figure 1: Inline Mode

WebApp
Customer
WAF
Figure 2: Out of Band Mode
Web Application
o
WAF
Customer Web Server
Figure 3: Agent Mode
WAF Provider Your datacenter
- — i
)
Web S
Customer WAF TH SRR

Figure 4: Cloud Mode

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020)

990

2 WAF as a Service

2.1 Problems it should solve
2.1.1 Simple network placement

By using an Agent, the network placement is simple
to implement (since the Agent would live in the same
environment as the web server) and by only using it
as a relay to the WAF service it’s resource require-
ments are small enough to avoid affecting the web
server or it’s resource allocation.

2.1.2 No false positives should be generated

Using context, historical information and business lo-
gic of the application, the service would allow the
teams to manage the false positive rate making it vir-
tually non existent if necessary.

2.1.3 Avoid adding latency for regular users

A focus on this solution would be to remove the
latency impact on regular users by performing out of
band analysis on the traffic. This is achieved by only
turning it into an inline WAF for threats performing
web application attacks against the website.

2.2 The solution

To solve these problems I developed a system that
was able to work in both inline and out of band mode.
By taking advantage of a small agent that would only
interact with a WAF service, it’s possible to take ad-
vantage of the Agent’s architecture benefits without
its drawbacks, and allow the application developers
to interact with it as with any other service. This
agent would not only generate logs of requests -that
the web servers produced- but also decide in what
situations further analysis by the WAF service was
required (which would impact the latency of the re-
quest).

The decision on whether or not the WAF service
should be involved in a particular request would not
be decided by the agent itself, but by an out of band
process. This process would be:

1. Inspecting all the requests

2. Replaying them against the WAF service (acting
in an out of band mode)

3. Updating a state store so only certain segments
of the traffic which were seen as riskier (due
to being involved in web application attacks or
other suspicious activity) to be routed through
the WAF service (acting in an in-line mode).

This architecture is able to provide the best of the out
of band mode (which is a lack of latency added for
regular users) and of an in-line mode (the ability to
stop web application attacks before they execute on a
web server). During the next section I will cover how

such a system can be built and what components are
needed.

3 Components

3.1 Web Application

The web application will be the one to decide how
they want to interact with the WAF service. The de-
velopers can choose to be fully in-line mode (which
means it would be always adding latency to its users),
exist in an out of band mode (without having the abil-
ity to block) or work in a hybrid mode. In this mode
they can also decide the false positive rate they would
want to accept to block attacks (if any).

The web application will also be responsible for send-
ing logs of each request -with business information
about it- to allow the out of band evaluation to detect
possible attacks.

3.2 Agent

The agent will act as a proxy for the web application
with minimal footprint. It will behave differently de-
pending on what application is using it, allowing the
application to decide how to respond to attacks. The
Agent will be the component to communicate in be-
half of the web application to the WAF service.

An alternative to an agent is using a library that can
be embedded in the web application itself and per-
forming checks against the WAF service before and
after a request is processed. This can be simpler to
implement, although there is a drawback with this ap-
proach: if an attack is able to compromise the web
application (for example its request handling code),
all visibility and defenses against web application at-
tacks on the web server would also be comprom-
ised.

3.3 Historical database

A historical database is needed to provide the ability
to understand, not just the current context, but the his-
torical context of a request too. This can involve activ-
ity on an endpoint through time, business value of
particular users or patterns of behaviour that can al-
low to avoid false positives due to changes on the ap-
plication or the user base. An example of this would
be Google’s BigQuery, which allows to perform inter-
active analysis of massively large datasets.

3.4 State store

The state store will allow us to store configuration that
the Agent can consume, which should be fast enough
to avoid latency impacting users. An example of this
would be the redis in-memory key-value database.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020)

991

3.5 Real time messaging service

To allow web applications to send encapsulated web
request in the form of logs and have those processed,
we will be using a real-time messaging service. An
example of this would be Google’s PubSub.

3.6 Log processing

The log processing component will consume from the
real time messaging service and from the encapsu-
lated web requests in the form of logs recreate them
and replay them to the WAF service. This will also
be able to calculate risk scores through windows of
time to benefit of real time context, helping deciding
what traffic needs to be routed through the WAF ser-
vice in an inline mode. An example of this would be
Google’s Dataflow.

3.7 WAF service

The WAF service is the core component of this archi-
tecture. It receives web requests and is able to respond
with risk scores based on its plugins. Due to its plug-
gable architecture, different types of checks can hap-
pen in parallel to evaluate a request. Based on its out-
put, an application can decide how it wants to react to
the request.

The WAF service can perform several checks in paral-
lel with:

* Open source components: Examples of them
could be Modsecurity or Naxsi which are open
source WAF solutions.

¢ Custom modules: They could be built to apply
business logic checks or evaluate machine learn-
ing models against the requests.

* Proprietary software or appliances: Adding them
would allows to reduce the complexity of their
installation and also add a path for a simple eval-
uation procedure.

3.8 Detection component

The detection component will be the one to perform
analysis on the result of the log processing compon-
ent, replaying the requests against the WAF service
out of band. It will use the information from the his-
torical database to update the state store, which the
Agent relies upon to decide which traffic would be
in-line or out of band.

3.9 Visualization

To be able to understand the activity currently impact
the web servers, and have visibility on attacks as
well as performance metrics, a visualization solution
should be placed. An example of this would be using
an ELK stack (Elasticsearch, Logstash and Kibana) to
store all processed requests for visualization of the

historical and real time activity of the WAF service.

4 Architectural diagram

5 Blocking web application attacks

To take advantage of this model, we need to be able to
efficiently decide what traffic to block. This will min-
imize the latency incurred on regular users and re-
move the possibility of false positives affecting them.
To achieve that we will need to decide what traffic
should be placed in an ‘inline’ mode in the following
ways:

5.1 Traffic routing

Traffic routing is the way by which we can decide
that portions of the traffic should work in an in-line
mode, having every single request analysed by the
WAF and blocked if it is considered a web applica-
tion attack. This allows applications that have a low
tolerance for latency to be able to have their traffic in-
spected and only add latency when a threat is detec-
ted and malicious requests need to be blocked. This
can be achieved in the following ways, either by hu-
man or an automatic decision making process:

5.1.1 Fingerprint based routing

By analysing the traffic automatically in the log pro-
cessing component, we can extract fingerprints that
are performing web application attacks and only have
those go through the WAF service (adding latency to
them). These fingerprints would be extracted by com-
bination of parts of the request (IP address, client ID,
User Agent or combinations) or by particular finger-
prints that might be automatically or manually added
(as for Oday fingerprints or known attack patterns).

While the Log processing component would be auto-
matically creating these fingerprints and adding them
to the State store component, so that the Agent is
aware that the traffic must be router to the WAF ser-
vice, this can also be triggered by an analyst which de-
cides that a particular fingerprint needs to be routed
through the WAFE.

5.1.2 Net block based routing

Another option for routing traffic is based on a net-
work block. This means that particular ISPs, hosting
providers or other known services that have a higher
risk of attacks coming from them (such as open prox-
ies or anonymity networks like TOR) can be routed
by default to the WAF service. This would happen by
updating the state store with the IP address net blocks
for these providers or members of the networks so
that the Agent is aware that it must route such traffic
to the WAF.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020)

992

State
Store
Web Server
Agent WAF
i I Service
Detection
e *
_ Web Application
QOut of band Y
Messaging Log processing Ietars
e o

Visualization

Figure 5: Architectural diagram

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020)

993

5.1.3 Virtual patching

For situations where a vulnerability is known to ex-
ist on particular endpoints, or where these endpoints
have a higher degree of risk and need to have the
WAPF service inspecting every single call (not only
when a threat is detected), we can enable virtual
patching. This means that particular endpoints are
always routed to the WAF service for analysis of re-
quests coming to them, either for the full endpoint or
a combination of parameters that might be vulnerable
to attacks.

5.2 False positive rate management

To find a way to avoid blocking users which might
not be performing web application attacks, we need
to first differentiate between a false positive on the
detection process (DFP) and a false positive on the
blocking process (BFP). While we will accept having
false positives on the detection process (which means
thinking a particular request might be a web applica-
tion attack when it’s not) we will focus on not having
false positives in the blocking process (affecting those
requests and blocking a normal user from accessing
resources on the web server).

An important point to take into account is that while
it’s possible to remove the probability of false posit-
ives at all, different applications might want to bal-
ance what false positive rate they are willing to ac-
cept against the risks of increasing the likelihood of
attacks from succeeding. Given the fact that the false
positive rate can be decreased by getting more con-
text around a request, the lower false positive rate we
want the more context we might require, which also
means more time is given to an attack to attempt to ex-
ploit the web application. Any application will need
to balance its threat model against the impact of af-
fecting users to find the right false positive rate to ac-
cept.

This section will focus on how to avoid blocking
user’s requests taking advantage of the information
we have available, before deciding which traffic needs
to be routed to the web server.

5.2.1 Business Logic Analysis

By looking at the business logic of the application we
can get information relevant to change the probability
of the request being part of an attack or not. This can
involve the trust we can give to some request attrib-
utes, such as the IP address or the client, what busi-
ness activity has happened for the user in a period
of time and what impact we would have by blocking
them. Leveraging these data points can allow us to re-
duce the impact of incorrectly blocking accounts and
routing traffic through the WAF service.

5.2.2 Historical Analysis

Looking at the history of the requests and its finger-
prints can help understand the risk of the request and
its possible impact. This allows to compare the re-
quest against other requests which were similar or
what is the rate of DFP’s (detection false positive) for
that particular endpoint or type of request.

5.2.3 Context Analysis

The context analysis of a request will be a key part of
avoiding BFP (blocking false positive) even if we have
a high amount of DFP. This would happen given the
fact that most web application attacks require many
requests to be able to find an actual vulnerability on
the web application. By looking at the context of a
request in terms of how many requests have been
marked as a possible attack, we can specify a particu-
lar false positive rate we are willing to accept and only
place the suspicious traffic on the in-line mode for the
WAF service if the context matches our desired BFP.

5.2.4 An example of setting the desired BFP

In the situation where we have an application that
wants a BFP of 0,00001% (one request would be in-
correctly blocked for every 10 million) but we have
a DFP of 0.1% (one request is incorrectly considered
an attack every 1 thousand). Given that the probabil-
ity of a DFP is independent of other requests, by only
placing traffic in an in-line mode once a score of 5 re-
quests marked as DFP is reached we can guarantee
the BFP of 0.00001%. Depending on the type of attack
and threat model of the application, the BFP and its
related score can be modified to get the best possible
balance in terms of security and impact to users.

6 Conclusion

To find a way to solve the problem of latency and
BFP that normal WAF setups introduce, this paper de-
scribes a strategy that mixes both the in-line and out
of band modes, in a hybrid architecture, that can dy-
namically choose what parts of the traffic should be
placed in in-line mode and which ones should con-
tinue in an out of band analysis mode. By leveraging
this architecture, this does not only avoid affecting
users with latency and incorrect blocking, but also im-
prove the response capabilities by allowing multiple
components to be placed as plugins of the WAF ser-
vice working in parallel to perform decisions and ana-
lyse the traffic. Leveraging open source components,
any organization can implement such an architecture
to improve their ability to protect its users and im-
prove their experience at their platform.

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

Magdeburger Journal zur Sicherheitsforschung // Ausgabe 19, Jahrgang 10, Band 1 (2020) 994

7 About the author

Juan Berner is a security researcher with over 9 years
of experience in the field, currently working as Secur-
ity Lead Developer, SME for Application Security and
Architect for security solutions at Booking.com. He
has given talks in the past on how to build an open
source SIEM (https://www.ekoparty.org/security-
monitoring-like-the-nsa.php) and on exploiting A/B
Testing frameworks (Exploiting A/B Testing for Fun
and Profit).

8 References

* https://www.acunetix.com/websitesecurity /web-
application-attack/

* https:/ /www.owasp.org/index.php/Web_Application_Firewall
* https://www.elastic.co/elk-stack

¢ https://redis.io/

* https://modsecurity.org/

* https://github.com/nbs-system/naxsi

* https://cloud.google.com/bigquery/

e https://cloud.google.com/pubsub/

* https://cloud.google.com/dataflow/

http:/ /www.sicherheitsforschung-magdeburg.de/publikationen/journal. html


http://www.sicherheitsforschung-magdeburg.de/publikationen/journal.html

	1 Introduction
	1.1 Web Application Firewall
	1.1.1 Inline
	1.1.2 Out of band
	1.1.3 Agent
	1.1.4 Cloud

	1.2 Typical problems with WAF setups
	1.2.1 Network placement
	1.2.2 False positive rate
	1.2.3 Latency added


	2 WAF as a Service
	2.1 Problems it should solve
	2.1.1 Simple network placement
	2.1.2 No false positives should be generated
	2.1.3 Avoid adding latency for regular users

	2.2 The solution

	3 Components
	3.1 Web Application
	3.2 Agent
	3.3 Historical database
	3.4 State store
	3.5 Real time messaging service
	3.6 Log processing
	3.7 WAF service
	3.8 Detection component
	3.9 Visualization

	4 Architectural diagram
	5 Blocking web application attacks
	5.1 Traffic routing
	5.1.1 Fingerprint based routing
	5.1.2 Net block based routing
	5.1.3 Virtual patching

	5.2 False positive rate management
	5.2.1 Business Logic Analysis
	5.2.2 Historical Analysis
	5.2.3 Context Analysis
	5.2.4 An example of setting the desired BFP


	6 Conclusion
	7 About the author
	8 References

